Preview

Acta Biomedica Scientifica

Расширенный поиск

Основы диабетического катарактогенеза и перспективные пути его фармакологической коррекции

https://doi.org/10.29413/ABS.2021-6.2.13

Полный текст:

Аннотация

Среди поздних осложнений сахарного диабета отдельно выделяется катаракта, приводящая к снижению зрительных функций и в дальнейшем – к слепоте. Несмотря на превалирование в настоящее время хирургии катаракты, которая при сахарном диабете сопровождается рядом ограничений и осложнений, продолжаются поиски эффективных средств консервативной терапии. В настоящем обзоре, выполненном на основе анализа данных научных источников преимущественно за 2015–2020 гг. c использованием Интернет-ресурсов (PubMed, Web of Science, Medline, eLibrary.ru, Cyberleninka), диабетический катарактогенез представлен как совокупность параллельных, но связанных и взаимовлияющих патобиохимических процессов, основными из которых являются избыточно интенсифицированные при сахарном диабете полиоловый путь превращения глюкозы, неферментативное гликирование и окислительная модификация хрусталиковых белков. Учитывая тот факт, что в хрусталике имеется высокое содержание белка, особое значение в появлении зон светорассеяния и снижения прозрачности хрусталика имеет формирование белковых агрегатов с высокой молекулярной массой. В обзоре подробно изложены данные о наиболее перспективных в эксперименте антикатарактальных соединениях, влияющих на посттрансляционную модификацию кристаллинов, препятствующих осмотическому и оксидативному стрессу в хрусталике и проявляющих антигликирующие свойства в отношении хрусталиковых белков. Эти данные наглядно подтверждают точку зрения о том, что поиск средств фармакологической коррекции катарактогенеза должен проводится, в первую очередь, среди соединений, обладающих антиоксидантной и антигликирующей активностью. 

Об авторах

А. А. Спасов
ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

доктор медицинских наук, профессор, академик РАН, заведующий кафедрой фармакологии и биоформатики, 

400131, г. Волгоград, пл. Павших Борцов, 1



Л. В. Науменко
ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

доктор медицинских наук, доцент, профессор кафедры фармакологии и биоформатики,

400131, г. Волгоград, пл. Павших Борцов, 1



Ю. А. Говорова
ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

врач-офтальмолог, соискатель кафедры фармакологии и биоформатики, 

400131, г. Волгоград, пл. Павших Борцов, 1



Список литературы

1. Šimunović M, Paradžik M, Škrabić R, Unić I, Bućan K, Škrabić V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int J Endocrinol. 2018; 20: 6763586. doi: 10.1155/2018/6763586

2. Stefek M. Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdiscip Toxicol. 2011; 4(2): 69-77. doi: 10.2478/v10102-011-0013-y

3. Abdelkader H, Longman M, Alany RG, Pierscionek B. On the anticataractogenic effects of L-carnosine: Is it best described as an antioxidant, metal-chelating agent or glycation inhibitor? Oxid Med Cell Longev. 2016; 16: 3240261. doi: 10.1155/2016/3240261

4. Mantych GJ, Hageman GS, Devaskar SU. Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology. 1993; 133(2): 600-607. doi: 10.1210/endo.133.2.8344201

5. Королёва И.А. Метаболизм хрусталика: особенности и пути коррекции. РМЖ. Клиническая офтальмология. 2015; 4: 191-195.

6. Ji L, Cheng L, Yang Z. Diosgenin, a novel aldose reductase inhibitor, attenuates the galactosemic cataract in rats. J Diabetes Res. 2017; 5: 7309816. doi: 10.1155/2017/7309816

7. Kiziltoprak H, Tekin K, Inanc M, Goker YS. Cataract in diabetes mellitus. World J Diabetes. 2019; 10(3): 140-153. doi: 10.4239/wjd.v10.i3.140

8. Oishi N, Morikubo S, Takamura Y, Kubo E, Tsuzuki S, Tanimoto T, et al. Correlation between adult diabetic cataracts and red blood cell aldose reductase levels. Invest Ophthalmol Vis Sci. 2006; 47: 2061-2064. doi: 10.1167/iovs.05-1042

9. Reddy AB, Tammali R, Mishra R, Srivastava S, Srivastava SK, Ramana KV. Aldose reductase deficiency protects sugar-induced lens opacification in rats. Chem Biol Interact. 2011; 191(1-3): 346- 350. doi: 10.1016/j.cbi.2011.02.028

10. Zukin LM, Pedler MG, Groman-Lupa S, Pantcheva M, Ammar DA, Petrash JM. Aldose reductase inhibition prevents development of posterior capsular opacification in an in vivo model of cataract surgery. Invest Ophthalmol Vis Sci. 2018; 59(8): 3591-3598. doi: 10.1167/iovs.18-23935

11. Wojnar W, Kaczmarczyk-Sedlak I, Zych M. Diosmin ameliorates the effects of oxidative stress in lenses of streptozotocin-induced type 1 diabetic rats. Pharmacol Rep. 2017; 69(5): 995-1000. doi: 10.1016/j.pharep.2017.04.005

12. Lim JC, Umapathy A, Grey AC, Vaghefi E, Donaldson PJ. Novel roles for the lens in preserving overall ocular health. Exp Eye Res. 2017; (156): 117-123. doi: 10.1016/j.exer.2016.05.027

13. Chang KC, Laffin B, Ponder J, Enzsöly A, Németh J, LaBarbera DV, et al. Beta-glucogallin reduces the expression of lipopolysaccharide-induced inflammatory markers by inhibition of aldose reductase in murine macrophages and ocular tissues. Chem Biol Interact. 2013; 202(1-3): 283-287. doi: 10.1016/j.cbi.2012.12.001

14. Vinson JA. Oxidative stress in cataracts. Pathophysiology. 2006; 13(3): 151-162. doi: 10.1016/j.pathophys.2006.05.006

15. Zhu L, Li J, Wu D, Li B. The protective effect of beta-casomorphin-7 via promoting Foxo1 activity and nuclear translocation in human lens epithelial cells. Cutan Ocul Toxicol. 2018; 37(3): 267- 274. doi: 10.1080/15569527.2018.1445095

16. Муранов К.О., Островский М.А. Молекулярная физиология и патология хрусталика глаза. М.: Торус-Пресс; 2013: 295.

17. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010; 107(9): 1058-1070.

18. Мальцев Е.В., Павлюченко К.П. Биологические особенности и заболевания хрусталика. Одесса: Астропринт; 2002: 448.

19. Horwitz J. Alpha-crystallin. Exp Eye Res. 2003; 76: 145-153. doi: 10.1016/S0014-4835(02)00278-6

20. Kumar PA, Kumar MS, Reddy GB. Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J. 2007; 408(2): 251-258. doi: 10.1042/BJ20070989

21. Ghosh KS, Chauhan P. Crystallins and their complexes. Subcell Biochem. 2019; 93: 439-460. doi: 10.1007/978-3-030-28151-9_14

22. Higashi Y, Higashi K, Mori A, Sakamoto K, Ishii K, Nakahara T. Anti-cataract effect of resveratrol in high-glucose-treated streptozotocin-induced diabetic rats. Biol Pharm Bull. 2018; 41(10): 1586-1592. doi: 10.1248/bpb.b18-00328

23. Simpanya MF, Ansari RR, Suh KI, Leverenz VR, Giblin FJ. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pigmodel of nuclear cataract: Dynamic light-scattering and HPLC analysis. Invest Ophthalmol Visual Sci. 2005; 46: 4641-4650. doi: 10.1167/iovs.05-0843

24. Takemoto L, Sorensen CM. Protein-protein interactions and lens transparency. Exp Eye Res. 2008; 87: 496-501.

25. Alghamdi AHS, Mohamed H, Sledge SM, Borchman D. Absorbance and light scattering of lenses organ cultured with glucose. Curr Eye Res. 2018; 43(10): 1233-1238. doi: 10.1080/027136 83.2018.1485953

26. Kaczmarczyk-Sedlak I, Folwarczna J, Sedlak L, Zych M, Wojnar W, Szumińska I, et al. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch Med Sci. 2019; 15(4): 1073-1080. doi: 10.5114/aoms.2019.85461

27. Kianpour M, Yousefi R. Carnosine prevents different structural damages induced by methylglyoxal in lens crystallins. Cell Biochem Biophys. 2019; 77(4): 343-355. doi: 10.1007/s12013-019-00884-3

28. Papadopoulou G, Zisimopoulos D, Kalaitzopoulou E, Makri OΕ, Tsapardoni FN, Georgakopoulos CD, et al. Age-related aqueous humor (AH) and lens epithelial cell/capsule protein carbonylation and AH protein concentration in cataract patients who have pseudoexfoliative diseases. Mol Vis. 2018; 24: 890-901.

29. Nagaraj RH, Linetsky M, Stitt AW. The pathogenic role of Maillard reaction in the aging eye. Amino Acids. 2012; 42(4): 1205-1220. doi: 10.1007/s00726-010-0778-x

30. Brings S, Fleming T, Freichel M, Muckenthaler MU, Herzig S, Nawroth PP. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int J Mol Sci. 2017; 18(5): 984. doi: 10.3390/ijms18050984

31. Bejarano E, Taylor A. Too sweet: Problems of protein glycation in the eye. Exp Eye Res. 2019; 178: 255-262. doi: 10.1016/j.exer.2018.08.017

32. Franke S, Dawczynski J, Strobel J, Niwa T, Stahl P, Stein G. Increased levels of advanced glycation end products in human cataractous lenses. J Cataract Refract Surg. 2003; 29(5): 998-1004. doi: 10.1016/s0886-3350(02)01841-2

33. Pehlivanoğlu S, Acar N, Albayrak S, Karakaya M, Ofluoğlu A. The assessment of autofluorescence of the crystalline lens in diabetic patients and healthy controls: Can it be used as a screening test? Clin Ophthalmol. 2018; 12: 1163-1170. doi: 10.2147/OPTH.S164960

34. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001; 280(5): 685. doi: 10.1152/ajpendo.2001.280.5.E685

35. Gul A, Rahman MA, Hasnain SN, Salim A, Simjee SU. Could oxidative stress associate with age products in cataractogenesis? Curr Eye Res. 2008; 33(8): 669-675. doi: 10.1080/02713680802250939

36. Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract. J Diabetes Compl. 2004; 18: 129-140. doi: 10.1016/S1056-8727(03)00009-6

37. Su S, Leng F, Guan L, Zhang L, Ge J, Wang C, et al. Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes. Invest Ophthalmol Vis Sci. 2014; 55(12): 7848-7861. doi: 10.1167/iovs.14-15175

38. Patil KK, Meshram RJ, Barage SH, Gacche RN. Dietary flavonoids inhibit the glycation of lens proteins: Implications in the management of diabetic cataract. 3 Biotech. 2019; 9(2): 47. doi: 10.1007/s13205-019-1581-3

39. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA. 1992; 89(21): 10449-10453. doi: 10.1073/pnas.89.21

40. Selivanova OM, Galzitskaya OV. Structural and functional peculiarities of α-crystallin. Biology (Basel). 2020; 9(4): 85. doi: 10.3390/biology9040085

41. Kumar MS, Reddy PY, Kumar PA, Surolia I, Reddy GB. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: Physiological significance and caveats of in vitro aggregation assays. Biochem J. 2004; 379(Pt 2): 273-282. doi: 10.1042/BJ20031633

42. Reddy VS, Reddy GB. Role of crystallins in diabetic complications. Biochim Biophys Acta. 2016; 1860(1 Pt B): 269-277. doi: 10.1016/j.bbagen.2015.05.009

43. Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A. Inhibitory effect of crocin(s) on lens α-crystallin glycation and aggregation, results in the decrease of the risk of diabetic cataract. Molecules. 2016; 21(2): 143. doi: 10.3390/molecules21020143

44. Karumanchi DK, Gaillard ER, Dillon J. Early diagnosis of diabetes through the eye. Photochem Photobiol. 2015; 91(6): 1497-1504. doi: 10.1111/php.12524

45. Li X, Liu W, Huang X, Xiong J, Wei X. Interaction of AR and iNOS in lens epithelial cell: A new pathogenesis and potential therapeutic targets of diabetic cataract. Arch Biochem Biophys. 2017; 615: 44-52. doi: 10.1016/j.abb.2017.01.007

46. Kim J, Kim CS, Sohn E, Kim H, Jeong IH, Kim JS. Lens epithelial cell apoptosis initiates diabetic cataractogenesis in the Zucker diabetic fatty rat. Graefes Arch Clin Exp Ophthalmol. 2010; 248(6): 811-818. doi: 10.1007/s00417-010-1313-1

47. Ghahramani M, Yousefi R, Khoshaman K, Alavianmehr MM. The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: New insights into the pathogenesis of cataract disorders. Colloids Surf B Biointerfaces. 2015; 125: 170-180. doi: 10.1016/j.colsurfb.2014.11.002

48. De Maria A, Zhao H, Bassnett S. Expression of potassium-dependent sodium-calcium exchanger in the murine lens. Exp Eye Res. 2018; 167: 18-24. doi: 10.1016/j.exer.2017.11.002

49. Rhodes JD, Sanderson J. The mechanisms of calcium homeostasis and signalling in the lens. Exp Eye Res. 2009; 88(2): 226-234. doi: 10.1016/j.exer.2008.10.025

50. del Valle LJ, Escribano C, Pérez JJ, Garriga P. Calcium-induced decrease of the thermal stability and chaperone activity of alpha-crystallin. Biochim Biophys Acta. 2002; 1601(1): 100-109. doi: 10.1016/s1570-9639(02)00429-6

51. Duncan G, Jacob TJ. Calcium and the physiology of cataract. Ciba Found Symp. 1984; 106: 132-152. doi: 10.1002/9780470720875.ch8

52. Shridas P, Sharma Y, Balasubramanian D. Transglutaminase-mediated crosslinking of a crystallin: Structural and functional consequence. FEBS Lett. 2001; 499: 245-250.

53. Zm SZ, Khoshaman K, Masoudi R, Hemmateenejad B, Yousefi R. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts. Spectrochim Acta A Mol Biomol Spectrosc. 2017; 170: 174-183. doi: 10.1016/j.saa.2016.07.017

54. Truscott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005; 80(5): 709-725. doi: 10.1016/j.exer.2004.12.007

55. Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, et al. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep. 2016; 6: 19396. doi: 10.1038/srep19396

56. Periyasamy P, Masahiko A, Rajan E, Toshimichi S. Promoter demethylation of Keap1 gene in human diabetic cataractous lenses. Biochemical and Biophysical Research Communications. 2012; 423: 542-548.

57. Khorsand M, Akmali M, Sharzad S, Beheshtitabar M. Melatonin reduces cataract formation and aldose reductase activity in lenses of streptozotocin-induced diabetic rat. Iran J Med Sci. 2016; 41(4): 305-313.

58. Lange RR, Lima L, Frühvald E, da Silva VS, de Souza AS, Montiani-Ferreira F. Cataracts and strabismus associated with hand rearing using artificial milk formulas in Bengal tiger (Panthera tigris spp tigris) cubs. Open Vet J. 2017; 7(1): 23-31. doi: 10.4314/ovj.v7i1.4

59. Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev. 2001; 17(5): 330-346. doi: 10.1002/dmrr.229

60. Malone JI, Benford SA, Malone J Jr. Taurine prevents galactose-induced cataracts. J Diabetes Complications. 1993; 7(1): 44-48. doi: 10.1016/1056-8727(93)90023-r

61. Hsu YW, Yeh SM, Chen YY, Chen YC, Lin SL, Tseng JK. Protective effects of taurine against alloxan-induced diabetic cataracts and refraction changes in New Zealand White rabbits. Exp Eye Res. 2012; 103: 71-77. doi: 10.1016/j.exer.2012.08.001

62. Bulakh PM, Chandorkar AG, Balsara JJ, Ranade SM, Albal MV. Effect of ‘catalin’ an anticataract agent on alloxan induced hyperglycaemia and diabetic cataract in rats. Indian J Ophthalmol. 1980; 28: 1-3. URL: https://www.ijo.in/text.asp?1980/28/1/1/31036

63. Son HY, Kim H, H Kwon Y. Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol (Tokyo). 2007; 53(4): 324-330. doi: 10.3177/jnsv.53.324

64. Kilic F, Bhardwaj R, Caulfeild J, Trevithick JR. Modelling cortical cataractogenesis 22: Is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity? Exp Eye Res. 1999; 69(3): 291-300. doi: 10.1006/exer.1999.0697

65. Официальная инструкция по применению препарата Каталин. URL: https://www.rlsnet.ru/tn_index_id_1689.htm 66. Евграфов В.Ю., Батманов Ю.Е. Катаракта. М.: Медицина; 2005: 364.

66. Офтальмология. Национальное руководство. Под ред. Аветисова С.Э., Егорова Е.А., Мошетовой Л.К., Нероева В.В., Тахчиди Х.П. М.: ГЭОТАР-Медиа; 2019: 904.

67. Wu J, Li X, Wan W, Yang Q, Ma W, Chen D, et al. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study. J Ethnopharmacol. 2017; 198: 255-261. doi: 10.1016/j.jep.2017.01.026

68. Patil KK, Gacche RN. Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. Int J Biol Macromol. 2017; 98: 730-738. doi: 10.1016/j.ijbiomac.2017.01.129

69. Kilari EK, Putta S. Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats. Cutan Ocul Txicol. 2017; 36(1): 52-59. doi: 10.3109/15569527.2016.1144610

70. Lou H, Yao J, Sun Y, Sun H, Song Z, Li H, et al. Role of blueberry anthocyanin extract in the expression of SIRT1 and NF-κB in rat lens epithelial cells in experimentally induced DM. Curr Eye Res. 2020; 12: 1-7. doi: 10.1080/02713683.2020.1776879

71. Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, et al. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale. 2019; 11(27): 13126- 13138. doi: 10.1039/c9nr02350j

72. Bai J, Yu N, Mu H, Dong L, Zhang X. Histidine protects human lens epithelial cells against H2 O2-induced oxidative stress injury through the NF-кB pathway. J Cell Biochem. 2018; 119(2): 1637-1645. doi: 10.1002/jcb.26323

73. Zhang D, Li M. Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO-1 signaling. Mol Med Rep. 2019; 20(2): 1017-1024. doi: 10.3892/mmr.2019.10320

74. Shree J, Choudhary R, Bodakhe SH. Losartan delays the progression of streptozotocin-induced diabetic cataracts in albino rats. J Biochem Mol Toxicol. 2019; 33(8): 22342. doi: 10.1002/jbt.22342

75. Matsuda S, Sugawa H, Shirakawa JI, Ohno RI, Kinoshita S, Ichimaru K, et al. Aphanothece sacrum (Sur.) Okada prevents cataractogenesis in type 1 diabetic mice. J Nutr Sci Vitaminol (Tokyo). 2017; 63(4): 263-268. doi: 10.3177/jnsv.63.263

76. Savateev KV, Fedotov VV, Butorin I, Eltsov OS, Slepukhin PA, Ulomsky EN, et al. Nitrothiadiazolo[3,2-a]pyrimidines as promising antiglycating agents. EurJ Med Chem. 2020; 185: 111808. doi: 10.1016/j.ejmech.2019.111808

77. Yan H, Guo Y, Zhang J, Ding Z, Ha W, Harding JJ. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol Vis. 2008; 14: 2282-2291.

78. Abdel-Ghaffar A, Ghanem HM, Ahmed EK, Hassanin OA, Mohamed RG. Ursodeoxycholic acid suppresses the formation of fructose/streptozotocin-induced diabetic cataract in rats. Fundam Clin Pharmacol. 2018; 32(6): 627-640. doi: 10.1111/fcp.12385

79. Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A. Prevention of α-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced-aggregation and suppression of cataract formation in the diabetic rat. IntJ Biol Macromol. 2019; 132: 1200-1207. doi: 10.1016/j.ijbiomac.2019.04.037


Для цитирования:


Спасов А.А., Науменко Л.В., Говорова Ю.А. Основы диабетического катарактогенеза и перспективные пути его фармакологической коррекции. Acta Biomedica Scientifica. 2021;6(2):114-125. https://doi.org/10.29413/ABS.2021-6.2.13

For citation:


Spassov A.A., Naumenko L.V., Govorova Yu.A. Fundamentals of Diabetic Cataractogenesis and Promising Ways of its Pharmacological Correction. Acta Biomedica Scientifica. 2021;6(2):114-125. (In Russ.) https://doi.org/10.29413/ABS.2021-6.2.13

Просмотров: 228


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)