Influence of Disorders of Fatty Acid Metabolism, Arterial Wall Hypoxia, and Intraplaque Hemorrhages on Lipid Accumulation in Atherosclerotic Vessels
https://doi.org/10.29413/ABS.2021-6.2.8
Abstract
The review describes a number of competing views on the main causes of cholesterol accumulation in atherosclerotic vessels. On the one hand, unregulated cholesterol influx into arterial intima is primarily related to the increasing proportion of atherogenic lipoproteins in the lipoprotein spectrum of blood. On the other hand, the leading role in this process is assigned to the increased permeability of endothelium for atherogenic lipoproteins. The increased ability of arterial intima connective tissue to bind atherogenic blood lipoproteins is also considered to be the leading cause of cholesterol accumulation in the vascular wall. The key role in cholesterol accumulation is also assigned to unregulated (by a negative feedback mechanism) absorption of atherogenic lipoproteins by foam cells. It is suggested that the main cause of abundant cholesterol accumulation in atherosclerotic vessels is significant inflow of this lipid into the vascular wall during vasa vasorum hemorrhages.
The article also provides arguments, according to which disorder of fatty acid metabolism in arterial wall cells can initiate accumulation of neutral lipids in them, contribute to the inflammation and negatively affect the mechanical conditions around the vasa vasorum in the arterial walls. As a result, the impact of pulse waves on the luminal surface of the arteries will lead to frequent hemorrhages of these microvessels. At the same time, adaptive-muscular intima hyperplasia, which develops in arterial channel areas subjected to high hemodynamic loads, causes local hypoxia in a vascular wall. As a result, arterial wall cells undergo even more severe lipid transformation. Hypoxia also stimulates vascularization of the arterial wall, which contributes to hemorrhages in it. With hemorrhages, free erythrocyte cholesterol penetrates into the forming atherosclerotic plaque, a part of this cholesterol forms cholesterol esters inside the arterial cells. The saturation of erythrocyte membranes with this lipid in conditions of hypercholesterolemia and atherogenic dyslipoproteinemia contributes to the process of cholesterol accumulation in arteries.
About the Author
A. N. OsipenkoBelarus
Head of the Central Educational and Research Laboratory,
Kosmonavtov str. 1, Mogilev 212022
References
1. Zaychik ASh, Churilov LP. Fundamentals of general pathology. Part 2. Fundamentals of pathochemistry. St. Petersburg: ELBI; 2000. (In Russ.)
2. Guyton JR, Klemp KF. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler Thromb. 1994; 14(8): 1305-1314. doi: 10.1161/01.atv.14.8.1305
3. Nguyen MT, Fernando S, Schwarz N, Tan JT, Bursill CA, Psaltis PJ. Inflammation as a therapeutic target in atherosclerosis. J Clin Med. 2019; 8(8): 1109. doi: 10.3390/jcm8081109
4. Wang D, Wang Z, Zhang L, Wang Y. Roles of cells from the arterial vessel wall in atherosclerosis. Mediators Inflamm. 2017; 2017: 8135934. doi: 10.1155/2017/8135934
5. Xu J, Lu X, Shi G-P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci. 2015; 16(5): 11574-11608. doi: 10.3390/ijms160511574
6. Sergienko IV, Ansheles AA, Kuharchuk VV. Atherosclerosis and dyslipidemia: Modern aspects of pathogenesis, diagnosis and treatment. Moscow: PatiSS; 2017.(In Russ.)
7. Morita SY. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol Pharm Bull. 2016; 39(1): 1-24. doi: 10.1248/bpb.b15-00716
8. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext. South Dartmouth (MA): MDText.com, 2019.
9. Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE. Low-density lipoprotein concentration in the normal left coronary artery tree. Biomed Eng Online. 2008; 7: 26. doi: 10.1186/1475-925X-7-26
10. Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020; 41(24): 2313-2330. doi: 10.1093/eurheartj/ehz962
11. Bocan TM, Guyton JR. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core. Am J Pathol. 1985; 120(2): 193-206.
12. Fogelstrand P, Boren J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis. 2012; 22(1): 1-7. doi: 10.1016/j.numecd.2011.09.007
13. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. Biomed Res Int. 2016; 2016: 9582430. doi: 10.1155/2016/9582430
14. Michel JB, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011; 32(16): 1977-1985. doi: 10.1093/eurheartj/ehr054
15. Pasterkamp G, van der Steen AF. Intraplaque hemorrhage: An imaging marker for atherosclerotic plaque destabilization? Thromb Vasc Biol. 2012; 32(2): 167-168. doi: 10.1161/ATVBAHA.111.241414
16. Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP., et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: A high-resolution magnetic resonance imaging study. Circulation. 2005; 111(21): 2768-2775. doi: 10.1161/circulationaha.104.504167
17. Tziakas DN, Chalikias GK, Boudoulas H. Significance of the cholesterol content of erythrocyte membranes in atherosclerosis. Clinical Lipidology. 2010; 5(4): 449-452. doi: 10.2217/clp.10.41
18. Wu M, Zhang J, Xu Y, Wang Y, Deng F, Chen X. Correlations of total cholesterol content of erythrocyte membranes with plasma cholesterol efflux capacity. Biomed Res. 2017; 28(10): 4305-4310.
19. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. Clin Invest. 1976; 58(1): 200-211. doi: 10.1172/JCI108450
20. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxid Med Cell Longev. 2017; 2017: 1273042. doi: 10.1155/2017/1273042
21. Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016; 18(12): 82. doi: 10.1007/s11883-016-0632-z
22. Giannotti KC, Weinert S, Viana MN, Leiguez E, Araujo TLS, Laurindo FRM, et al. A secreted phospholipase A2 induces formation of smooth muscle foam cells which transdifferentiate to macrophage-like state. Molecules. 2019; 24(18): 3244. doi: 10.3390/molecules24183244
23. Chellan B, Reardon CA, Getz GS, Hofmann Bowman MA. Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol. 2016; 36(6): 1101-1113. doi: 10.1161/ATVBAHA.116.307306
24. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016; 118(4): 692-702. doi: 10.1161/CIRCRESAHA.115.306361
25. Pourcet B, Staels B. Alternative macrophages in atherosclerosis: Not always protective! J Clin Invest. 2018; 128(3): 910-912. doi: 10.1172/JCI120123
26. Klimov AN, Nikulcheva NG. Lipids, lipoproteins, and atherosclerosis. St. Petersburg: Piter Press; 1995. (In Russ.).
27. Vance DE, Vance JE. (eds.) Biochemistry of lipids, lipoproteins and membranes. Elsevier, 2008. doi: 10.1016/B978-0-444-53219-0.X5001-6
28. Hung KT, Berisha SZ, Ritchey BM, Santore J, Smith JD. Red blood cells play a role in reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012; 32(6): 1460-1465. doi: 10.1161/ATVBAHA.112.248971
29. Maximova AS, Bobrikova EE, Bukhovets IL, Plotnikov MP, Ussov WYu. The structure of atherosclerotic plaque as a defining factor of cerebrovascular reactivity in patients with carotid atherosclerosis. The Siberian Medical Journal. 2016; 31(2): 38-43. (In Russ.)
30. Gubareva EYu, Gubareva IV. Vascular endothelial growth factor as a potential marker of subclinical organ damage mediated by arterial hypertension. The Siberian Medical Journal. 2019; 34(3): 40-44. doi: 10.29001/2073-8552-2019-34-3-40-44. (In Russ.)
31. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001; 7(4): 425-429. doi: 10.1038/86490
32. Inoue M, Itoh H., Ueda M, Naruko T, Kojima A, Komatsu R, et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: Possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998; 98(20): 2108-2116. doi: 10.1161/01.cir.98.20.2108
33. Taratukhin EO. Atherosclerosis and fatty acids: Important association and new therapeutic approach. Russian Journal of Cardiology. 2011; 91(5): 77-80. (In Russ.)
34. Clair St. RW, Lofland HB, Clarkson TB. Composition and synthesis of fatty acids in atherosclerotic aortas of the pigeon. J Lipid Res. 1968; 9(6): 739-747.
35. Hamlat N, Forcheron F, Negazzi S, del Carmine P, Feugier P, Bricca G, et al. Lipogenesis in arterial wall and vascular smooth muscular cells: Regulation and abnormalities in insulin-resistance. Cardiovasc Diabetol. 2009; 8: 64. doi: 10.1186/1475-2840-8-64
36. Ménégaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis. 2019; 291: 52-61. doi: 10.1016/j.atherosclerosis.2019.10.002
37. Ménégaut L, Masson D, Abello N, Denimal D, Truntzer C, Ducoroy P, et al. Specific enrichment of 2-arachidonoyl-lysophosphatidylcholine in carotid atheroma plaque from type 2 diabetic patients. Atherosclerosis. 2016; 251: 339-347. doi: 10.1016/j.atherosclerosis.2016.05.004
38. Osipenko AN. Fatty acid metabolism disorder as a factor in atherogenesis. Rom J Diabetes Nutr Metab Dis. 2018; 25(3): 243- 252. doi: 10.2478/rjdnmd-2018-0028
39. Remmerie A, Scott CL. Macrophages and lipid metabolism. Cellular immunology. 2018; 330: 27-42. doi: 10.1016/j.cellimm.2018.01.020
40. Yvan-Charvet L, Ivanov S. Metabolic reprogramming of macrophages in atherosclerosis: Is it all about cholesterol? J Lipid Atheroscler. 2020; 9(2): 231-242. doi: 10.12997/jla.2020.9.2.231
41. Hellmuth C, Demmelmair H, Schmitt I, Peissner W, Blüher M, Koletzko B. Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One. 2013; 8(10): e74927. doi: 10.1371/journal.pone.0074927
42. Boden G. Obesity and free fatty acids (FFA). Endocrinol Metab Clin North Am. 2008; 37(3): 635-646. doi: 10.1016/j. ecl.2008.06.007
43. Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM. Fatty acid synthase: Association with insulin resistance, type 2 diabetes, and cancer. Clin Chem. 2009; 55(3): 425-438. doi: 10.1373/clinchem.2008.115352
44. Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res. 2010; 51(7): 1871-1877. doi: 10.1194/jlr.M004747
45. Kusakabe T, Maeda M, Hoshi N, Sugino T, Watanabe K, Fukuda T, et al. Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J Histochem Cytochem. 2000; 48(5): 613- 622. doi: 10.1177/002215540004800505
46. Yew Tan C, Virtue S, Murfitt S, Roberts LD, Phua YH, Dale M, et al. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep. 2015; 5: 18366. doi: 10.1038/srep18366
47. Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 2018; 28(6): 866-880.e15. doi: 10.1016/j.cmet.2018.07.019
48. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski C.M, Yandell BS, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002; 99(17): 11482-11486. doi: 10.1073/pnas.132384699
49. Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Grahame Hardie D, et al. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA. 2004; 101(17): 6409-6414. doi: 10.1073/pnas.0401627101
50. Osipenko AN. Antiatherogenic nature of fatty acid synthesis in rats is one of the possible reasons for their resistance to atherosclerosis. The News of Mogilev State A. Kuleshov University. Series B, Natural sciences. 2019; 54(2): 110-115. (In Russ.)
51. Kersten S. Effects of fatty acids on gene expression: role of peroxisome proliferator-activated receptor α, liver X receptor α and sterol regulatory element-binding protein-1c. Proc Nutr Soc. 2002; 61(3): 371-374. doi: 10.1079/PNS2002169
52. Teng Z, He J, Degnan AJ, Chen S, Sadat U, Bahaei NS, et al. Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage. Atherosclerosis. 2012; 223(2): 321-326. doi: 10.1016/j.atherosclerosis.2012.06.015
53. Saini-Chohan HK, Mitchell RW, Vaz FM, Zelinski T, Hatch GM. Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic review series: Genetics of human lipid diseases. J Lipid Res. 2012; 53(1): 4-27. doi: 10.1194/jlr.R012120
54. Kuruma T, Tanigawa T, Uchida Y, Tetsuya O, Ueda H. Large cholesterol granuloma of the middle ear eroding into the middle cranial fossa. Case Rep Otolaryngol. 2017; 2017: 4793786. doi: 10.1155/2017/4793786
55. Sun Z, Cao Y, Zhai LZ. Java brucea and Chinese herbal medicine for the treatment of cholesterol granuloma in the suprasellar and sellar regions: A case report and literature review. Medicine (Baltimore). 2017; 96(5): e5930. doi: 10.1097/MD.0000000000005930
56. Chen M, Mason RP, Tulenko TN. Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes. Biochim Biophys Acta. 1995; 1272(2): 101- 112. doi: 10.1016/0925-4439(95)00073-d
57. Wang H, Harrison-Shostak DC, Wang XF, Nieminen AL, Lemasters JJ, Herman B. Role of phospholipid catabolism in hypoxic and ischemic injury. Journal Advances in Lipobiology. 1997; 2: 167-194. doi: 10.1016/S1874-5245(97)80009-2
58. Hamroun A, Pekar JD, Lionet A, Ghulam A, Maboudou P, Mercier A, et al. Ionized calcium: Analytical challenges and clinical relevance. J Lab Precis Med. 2020; 5: 22.
59. Damron DS, Dorman RV. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces. Mol Chem Neuropathol. 1990; 12(3): 177-190. doi: 10.1007/BF03159943
60. Goñi FM, Alonso A. Sphingomyelinases: Enzymology and membrane activity. FEBS Lett. 2002; 531(1): 38-46. doi: 10.1016/ s0014-5793(02)03482-8
61. Mallat Z, Lambeau G, Tedgui A. Lipoprotein-associated and secreted phospholipases A2 in cardiovascular disease: Roles as biological effectors and biomarkers. Circulation. 2010; 122(21): 2183-2200. doi: 10.1161/CIRCULATIONAHA.110.936393
62. Osipenko AN. Plasmalogens in intact and atherosclerotic arteries. The News of Mogilev State A. Kuleshov University. Series B, Natural sciences. 2020; 56(2): 70-78. (In Russ.)
63. Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012; 1822(9): 1442- 1452. doi: 10.1016/j.bbadis.2012.05.008
64. Uydu HA, Bostan M, Atak M, Yılmaz A, Demir A, Akçan B, et al. Cholesterol forms and traditional lipid profile for projection of atherogenic dyslipidemia: lipoprotein subfractions and erythrocyte membrane cholesterol. J Membr Biol. 2014; 247(2): 127-134. doi: 10.1007/s00232-013-9611-2
Review
For citations:
Osipenko A.N. Influence of Disorders of Fatty Acid Metabolism, Arterial Wall Hypoxia, and Intraplaque Hemorrhages on Lipid Accumulation in Atherosclerotic Vessels. Acta Biomedica Scientifica. 2021;6(2):70-80. (In Russ.) https://doi.org/10.29413/ABS.2021-6.2.8