Preview

Acta Biomedica Scientifica

Advanced search

Crosslinking of Thin Corneas: a Modern Vision of the Problem. Literature Review

https://doi.org/10.29413/ABS.2020-5.5.10

Abstract

Ultraviolet crosslinking is a pathogenetically oriented method of treating primary and secondary corneal ectasias that cause irregular astigmatism and visual impairment. Advanced stage of the disease, when the initial thickness of the cornea is below 400 mc, is a contraindication to the use of the standard «Dresden» protocol of the procedure. In such cases, it is possible to use modified UV crosslinking protocols. This article presents the modern crosslinking methods used for progressive keratoconus in advanced stages with a thin cornea. The presented methods are combined taking into account principled approaches – using additional tools and without them. Both approaches are based on a temporary artificial increase in the thickness of the cornea during the procedure in order to reduce the likelihood of damage to the deep layers of the cornea. The evolution of crosslinking protocols for thin corneas began with the use of hypoosmolar solutions that increase the thickness of the cornea to safe values. However, such an approach was not stable and the change in pachymetry parameters during the procedure created difficulties in its standardization. The use of different staff to increase the thickness of the cornea by providing an additional layer like a contact or biological lens seemed more encouraging. At the same time, the low permeability of these additional layers to oxygen, much needed for the UV crosslinking process of macromolecules, limited the overall effectiveness of the procedure. As a result of the progressive development of technologies and  the improvement of devices, the logical continuation of the trend of modifying the crosslinking protocol was the  introduction of an individual approach to customization of the protocol. The described modified protocols, taking into account the different principles of the surgical approach in ultraviolet radiation, set forth the results, evaluate their effectiveness and safety when applied to patients with a thin cornea.

About the Authors

M. M. Bikbov
Ufa Eye Research Institute
Russian Federation

Dr. Sc. (Med.), Professor, Director

Pushkina str. 90, Ufa 450008, Russian Federation




Iu. A. Rusakova
Ufa Eye Research Institute
Russian Federation
Research Officer of the Department of Corneal and Lens Surgery

Pushkina str. 90, Ufa 450008, Russian Federation



E. L. Usubov
Ufa Eye Research Institute
Russian Federation
Cand. Sc. (Med.), Head of the Anterior Segment Transplantation Surgery of the Eye

Pushkina str. 90, Ufa 450008, Russian Federation



E. M. Rakhimova
Ufa Eye Research Institute
Russian Federation
Research Officer of the Department of Corneal and Lens Surgery

Pushkina str. 90, Ufa 450008, Russian Federation



References

1. Bikbov MM, Khalimov AR, Usubov EL. Ultraviolet corneal crosslinking. Annals of the Russian Academy of Medical Sciences. 2016; 71(3): 224-232. doi: 10.15690/vramn562 (In Russ.)

2. Bikbov MM, Bikbova GM. Corneal ectasia. Moscow: Oftalmologiya; 2011. (In Russ.)

3. Bikbov MM, Bikbova GM, Khalimov AR, Usubov EL, Kazakbayeva GM. Corneal ectasia. Selected lectures. Moscow: Aprel; 2018. (In Russ.)

4. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-ainduced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135: 620-627. doi: 10.1016/s0002-9394(02)02220-1

5. Deshmukh R, Hafezi F, Kymionis GD, Kling S, Shah R, Padmanabhan P, et al. Current concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019; 67(1): 8-15. doi: 10.4103/ijo.IJO_1403_18

6. Wollensak G. Crosslinking treatment of progressive keratoconus: New hope. Curr Opin Ophthalmol. 2006; 17: 356-360. doi: 10.1097/01.icu.0000233954.86723.25

7. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003; 29(9): 1786-1790. doi: 10.1016/s0886-3350(03)00343-2

8. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004; 18(7): 718-722. doi: 10.1038/sj.eye.6700751

9. Han Y, Xu Y, Zhu W, Liu Y, Liu Z, Dou X, et al. Thinner corneas appear to have more striking effects of corneal collagen crosslinking in patients with progressive keratoconus. J Ophthalmol. 2017; 2017: 6490915. doi: 10.1155/2017/6490915

10. Vinciguerra P, Albè E, Mahmoud A, Trazza S, Hafezi F, Roberts C. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal crosslinking. J Refract Surg. 2010; 26(9): 669-676. doi: 10.3928/1081597X-20100331-01

11. Wollensak G, Spörl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003; 35: 324-328. doi: 10.1159/000074071

12. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009; 35: 540-546. doi: 10.1016/j.jcrs.2008.11.036

13. Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol Auckl NZ. 2012; 6: 1785-1792. doi: 10.2147/OPTH.S37335

14. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: Bilateral study. J Cataract Refract Surg. 2012; 38(2): 283-291. doi: 10.1016/j.jcrs.2011.08.030

15. Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010; 26: 942-948. doi: 10.3928/1081597X-20100212-09

16. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: Riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009; 35(5): 893-899. doi: 10.1016/j.jcrs.2009.01.009

17. Chang S, Chi R, Wu C, Su M. Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp Eye Res. 2000; 71: 3-10. doi: 10.1006/exer.2000.0849

18. Majumdar S, Hippalgaonkar K, Repka M. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int J Pharm. 2008; 348(1-2): 175-178. doi: 10.1016/j.ijpharm.2007.08.017

19. Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010; 36: 114-120. doi: 10.1016/j.jcrs.2009.07.044

20. Bottós K, Schor P, Dreyfuss J, Nader H, Chamon W. Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras Oftalmol. 2011; 74: 348-351. doi: 10.1590/s0004-27492011000500008

21. Caporossi A, Mazzotta C, Paradiso A, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013; 39: 1157-1163. doi: 10.1016/j.jcrs.2013.03.026

22. Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F. Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg. 2016; 32(6): 372-377. doi: 10.3928/1081597X-20160428-02

23. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmologica. 2013; 92(1): 30-34. doi: 10.1111/aos.12235

24. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy S, et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016; 57: 594-603. doi: 10.1167/iovs.13-12595

25. Jouve L, Borderie V, Sandali O, Temstet C, Basli E, Laroche L, et al. Conventional and iontophoresis corneal cross-linking for keratoconus: Efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea. 2017; 36: 153-162. doi: 10.1097/ICO.0000000000001062

26. Cantemir A, Alexa A, Anton N, Ciuntu R, Danielescu C, Chiselita D, et al. Evaluation of iontophoretic collagen cross-linking for early stage of progressive keratoconus compared to standard cross-linking: A non-inferiority study. Ophthalmol Ther. 2017; 6: 147-160. doi: 10.1007/s40123-017-0076-8

27. Kymionis G, Diakonis V, Coskunseven E, Jankov M, Yoo SH, Pallikaris IG. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009; 9:10. doi: 10.1186/1471-2415-9-10

28. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal crosslinking: Epithelial island cross-linking technique. Clin Ophthalmol Auckl NZ. 2014; 8: 1337-1343. doi: 10.2147/OPTH.S66372

29. Cagil N, Sarac O, Can G, Akcay E, Can M. Outcomes of corneal collagen crosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas. Int Ophthalmol. 2017; 37: 103-109. doi: 10.1007/s10792-016-0234-3

30. Kaya V, Utine C, Yilmaz O. Efficacy of corneal collagen cross-linking using a custom epithelial debridement technique in thin corneas: A confocal microscopy study. J Refract Surg. 2011; 27: 444-450. doi: 10.3928/1081597X-20101201-01

31. Jacob S, Kumar D, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): A new technique for cross-linking thin corneas. J Refract Surg. 2014; 30(6): 366-372. doi: 10.3928/1081597X-20140523-01

32. Chen X, Stojanovic A, Eidet J, Utheim T. Corneal collagen cross-linking (CXL) in thin corneas. Eye Vis Lond Engl. 2015; 2: 15. doi: 10.1186/s40662-015-0025-3

33. Wollensak G, Spörl E, Herbst H. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Acta Ophthalmol. 2019; 97(1): 84-90. doi: 10.1111/aos.13828

34. Zhang H, Roozbahani M, Piccinini A, Golan O, Hafezi F, Scarcelli G, et al. Depth-dependent reduction of biomechanical efficacy of contact lens-assisted corneal cross-linking analyzed by Brillouin microscopy. J Refract Surg. 2019; 35(11): 721-728. doi: 10.3928/1081597X-20191004-01

35. Malhotra C, Arun K, Gupta A, Ram J, Ramatchandirane B, Dhingra D, et al. Demarcation line depth after contact lens-assisted corneal crosslinking for progressive keratoconus: comparison of dextran-based and hydroxypropyl methylcellulose-based riboflavin solutions. J Cataract Refract Surg. 2017; 43(10): 1263-1270. doi: 10.1016/j.jcrs.2017.07.032

36. Knyazer B, Kotlas RM, Chorny A, Lifshitz T, Achiron A, Mimouni M. Corneal cross-linking in thin corneas: 1-year results of accelerated contact lens-assisted treatment of keratoconus. J Refract Surg. 2019; 35(10): 642-648. doi: 10.3928/1081597X-20190903-01

37. Slavova MA, Shipilov VA, Apostolova AS. Comparative analysis of results of the accelerated crosslinking of collagen of a thin cornea at primary keratoconus and iatrogenic keratectasia. Sovremennyye tekhnologii v oftalmologii. 2019; (5): 304-308. doi: 10.25276/2312-4911-2019-5-304-308 (In Russ.)

38. Sachdev M, Gupta D, Sachdev G, Sachdev R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015; 41: 918-923. doi: 10.1016/j.jcrs.2015.04.007

39. Golubeva YuYu, Tereshchenko AV, Trifanenkova IG, Vishnyakova YeN, Demyanchenko SK. Ultraviolet crosslinking technique in the treatment of progressive keratoconus with a «thin cornea». Sovremennyye tekhnologii v oftalmologii. 2019; (4): 59-62. doi: 10.25276/2312-4911-2019-4-59-62 (In Russ.)

40. Maurice D, Giardini A. Swelling of the cornea in vivo after the destruction of its limiting layers. Br J Ophthalmol. 1951; 35(12): 791-797. doi: 10.1136/bjo.35.12.791

41. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009; 35: 621-624. doi: 10.1136/bjo.35.12.791

42. Raiskup F, Spoerl E. Corneal cross-linking with hypo-osmolar riboflavin solution in thin keratoconic corneas. Am J Ophthalmol. 2011; 152(1): 28-32.e1. doi: 10.1016/j.ajo.2011.01.016

43. Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg. 2009; 25: S824-828. doi: 10.3928/1081597X-20090813-12

44. Schmidinger G, Pachala M, Prager F. Pachymetry changes during corneal crosslinking: Effect of closed eyelids and hypotonic riboflavin solution. J Cataract Refract Surg. 2013; 39: 1179-1183. doi: 10.1016/j.jcrs.2013.03.021

45. Koç M, Uzel M, Koban Y, Tekin K, Taşlpnar A, Yilmazbaş P. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin corneas: Short-term results. Cornea. 2016; 35(3): 350-354. doi: 10.1097/ICO.0000000000000701

46. Stojanovic A, Zhou W, Utheim T. Corneal collagen crosslinking with and without epithelial removal: A contralateral study with 0.5% hypotonic riboflavin solution. BioMed Res Int. 2014; 2014: 619398. doi: 101155/2014/619398

47. Larrea X, Büchler P. A transient diffusion model of the cornea for the assessment of oxygen diffusivity and consumption. Invest Ophthalmol Vis Sci. 2009; 50: 1076-1080. doi: 10.1167/iovs.08-2479

48. Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: Failure in an extremely thin cornea. Cornea. 2011; 30: 917-919. doi: 10.1097/ICO.0b013e31820143d1

49. Kling S, Hafezi F. An algorithm to predict the biomechanical stiffening effect in corneal cross-linking. J Refract Surg. 2017; 33(2): 128-136. doi: 10.3928/1081597X-20161206-01


Review

For citations:


Bikbov M.M., Rusakova I.A., Usubov E.L., Rakhimova E.M. Crosslinking of Thin Corneas: a Modern Vision of the Problem. Literature Review. Acta Biomedica Scientifica. 2020;5(5):73-80. (In Russ.) https://doi.org/10.29413/ABS.2020-5.5.10

Views: 1298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)