Кросслинкинг тонких роговиц: современное видение проблемы. Обзор литературы
https://doi.org/10.29413/ABS.2020-5.5.10
Аннотация
Об авторах
М. М. БикбовРоссия
доктор медицинских наук, профессор, директор
450008, г. Уфа, ул. Пушкина, 90, Россия
Ю. А. Русакова
Россия
научный сотрудник отделения хирургии роговицы и хрусталика
450008, г. Уфа, ул. Пушкина, 90, Россия
Э. Л. Усубов
Россия
кандидат медицинских наук, заведующий лабораторией трансплантационной хирургии переднего отрезка глаза
450008, г. Уфа, ул. Пушкина, 90, Россия
Э. М. Рахимова
Россия
научный сотрудник отделения хирургии роговицы и хрусталика
450008, г. Уфа, ул. Пушкина, 90, Россия
Список литературы
1. Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник Российской академии медицинских наук. 2016; 71(3): 224-232. doi: 10.15690/vramn562
2. Бикбов М.М., Бикбова Г.М. Эктазии роговицы. М.: Офтальмология; 2011.
3. Бикбов М.М., Бикбова Г.М., Халимов А.Р., Усубов Э.Л., Казакбаева Г.М. Эктазии роговицы. Избранные лекции. М.: Апрель; 2018.
4. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet- ainduced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135: 620-627. doi: 10.1016/s0002-9394(02)02220-1
5. Deshmukh R, Hafezi F, Kymionis GD, Kling S, Shah R, Padmanabhan P, et al. Current concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019; 67(1): 8-15. doi: 10.4103/ijo.IJO_1403_18
6. Wollensak G. Crosslinking treatment of progressive keratoconus: New hope. Curr Opin Ophthalmol. 2006; 17: 356-360. doi: 10.1097/01.icu.0000233954.86723.25
7. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003; 29(9): 1786-1790. doi: 10.1016/s0886-3350(03)00343-2
8. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004; 18(7): 718-722. doi: 10.1038/sj.eye.6700751
9. Han Y, Xu Y, Zhu W, Liu Y, Liu Z, Dou X, et al. Thinner corneas appear to have more striking effects of corneal collagen crosslinking in patients with progressive keratoconus. J Ophthalmol. 2017; 2017: 6490915. doi: 10.1155/2017/6490915
10. Vinciguerra P, Albè E, Mahmoud A, Trazza S, Hafezi F, Roberts C. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J Refract Surg. 2010; 26(9): 669-676. doi: 10.3928/1081597X-20100331-01
11. Wollensak G, Spörl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003; 35: 324-328. doi: 10.1159/000074071
12. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009; 35: 540-546. doi: 10.1016/j.jcrs.2008.11.036
13. Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol Auckl NZ. 2012; 6: 1785-1792. doi: 10.2147/OPTH.S37335
14. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: Bilateral study. J Cataract Refract Surg. 2012; 38(2): 283-291. doi: 10.1016/j.jcrs.2011.08.030
15. Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010; 26: 942-948. doi: 10.3928/1081597X-20100212-09
16. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: Riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009; 35(5): 893-899. doi: 10.1016/j.jcrs.2009.01.009
17. Chang S, Chi R, Wu C, Su M. Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp Eye Res. 2000; 71: 3-10. doi: 10.1006/exer.2000.0849
18. Majumdar S, Hippalgaonkar K, Repka M. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int J Pharm. 2008; 348(1-2): 175-178. doi: 10.1016/j.ijpharm.2007.08.017
19. Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010; 36: 114-120. doi: 10.1016/j.jcrs.2009.07.044
20. Bottós K, Schor P, Dreyfuss J, Nader H, Chamon W. Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras Oftalmol. 2011; 74: 348-351. doi: 10.1590/s0004-27492011000500008
21. Caporossi A, Mazzotta C, Paradiso A, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013; 39: 1157-1163. doi: 10.1016/j.jcrs.2013.03.026
22. Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F. Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg. 2016; 32(6): 372- 377. doi: 10.3928/1081597X-20160428-02
23. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmologica. 2013; 92(1): 30-34. doi: 10.1111/aos.12235
24. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy S, et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016; 57: 594-603. doi: 10.1167/iovs.13-12595
25. Jouve L, Borderie V, Sandali O, Temstet C, Basli E, Laroche L, et al. Conventional and iontophoresis corneal cross- linking for keratoconus: Efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea. 2017; 36: 153-162. doi: 10.1097/ICO.0000000000001062
26. Cantemir A, Alexa A, Anton N, Ciuntu R, Danielescu C, Chiselita D, et al. Evaluation of iontophoretic collagen cross- linking for early stage of progressive keratoconus compared to standard cross-linking: A non-inferiority study. Ophthalmol Ther. 2017; 6: 147-160. doi: 10.1007/s40123-017-0076-8
27. Kymionis G, Diakonis V, Coskunseven E, Jankov M, Yoo SH, Pallikaris IG. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009; 9: 10. doi: 10.1186/1471-2415-9-10
28. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal crosslinking: Epithelial island cross-linking technique. Clin Ophthalmol Auckl NZ. 2014; 8: 1337-1343. doi: 10.2147/OPTH.S66372
29. Cagil N, Sarac O, Can G, Akcay E, Can M. Outcomes of corneal collagen crosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas. Int Ophthalmol. 2017; 37: 103-109. doi: 10.1007/s10792-016-0234-3
30. Kaya V, Utine C, Yilmaz O. Efficacy of corneal collagen cross-linking using a custom epithelial debridement technique in thin corneas: A confocal microscopy study. J Refract Surg. 2011; 27: 444-450. doi: 10.3928/1081597X-20101201-01
31. Jacob S, Kumar D, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): A new technique for cross-linking thin corneas. J Refract Surg. 2014; 30(6): 366-372. doi: 10.3928/1081597X-20140523-01
32. Chen X, Stojanovic A, Eidet J, Utheim T. Corneal collagen cross-linking (CXL) in thin corneas. Eye Vis Lond Engl. 2015; 2: 15. doi: 10.1186/s40662-015-0025-3
33. Wollensak G, Spörl E, Herbst H. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Acta Ophthalmol. 2019; 97(1): 84-90. doi: 10.1111/aos.13828
34. Zhang H, Roozbahani M, Piccinini A, Golan O, Hafezi F, Scarcelli G, et al. Depth-dependent reduction of biomechanical efficacy of contact lens-assisted corneal cross-linking analyzed by Brillouin microscopy. J Refract Surg. 2019; 35(11): 721-728. doi: 10.3928/1081597X-20191004-01
35. Malhotra C, Arun K, Gupta A, Ram J, Ramatchandirane B, Dhingra D, et al. Demarcation line depth after contact lens- assisted corneal crosslinking for progressive keratoconus: comparison of dextran-based and hydroxypropyl methylcellulose-based riboflavin solutions. J Cataract Refract Surg. 2017; 43(10): 1263-1270. doi: 10.1016/j.jcrs.2017.07.032
36. Knyazer B, Kotlas RM, Chorny A, Lifshitz T, Achiron A, Mimouni M. Corneal cross-linking in thin corneas: 1-year results of accelerated contact lens-assisted treatment of keratoconus. J Refract Surg. 2019; 35(10): 642-648. doi: 10.3928/1081597X-20190903-01
37. Славова М.А., Шипилов В.А., Апостолова А.С. Сравнительный анализ результатов ускоренного кросслинкинга коллагена тонкой роговицы при первичном кератоконусе и ятрогенных кератэктазиях. Современные технологии в офтальмологии. 2019; (5): 304-308. doi: 10.25276/2312-4911-2019-5-304-308
38. Sachdev M, Gupta D, Sachdev G, Sachdev R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015; 41: 918-923. doi: 10.1016/j.jcrs.2015.04.007
39. Голубева Ю.Ю., Терещенко А.В., Трифаненкова И.Г., Вишнякова Е.Н., Демьянченко С.К. Методика ультрафиолетового кросслинкинга в лечении прогрессирующего кератоконуса при «тонкой роговице». Современные технологии в офтальмологии. 2019; (4): 59- 62. doi: 10.25276/2312-4911-2019-4-59-62
40. Maurice D, Giardini A. Swelling of the cornea in vivo after the destruction of its limiting layers. Br J Ophthalmol. 1951; 35(12): 791-797. doi: 10.1136/bjo.35.12.791
41. Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009; 35: 621-624. doi: 10.1136/bjo.35.12.791
42. Raiskup F, Spoerl E. Corneal cross-linking with hypoosmolar riboflavin solution in thin keratoconic corneas. Am J Ophthalmol. 2011; 152(1): 28-32.e1. doi: 10.1016/j.ajo.2011.01.016
43. Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg. 2009; 25: S824-828. doi: 10.3928/1081597X-20090813-12
44. Schmidinger G, Pachala M, Prager F. Pachymetry changes during corneal crosslinking: Effect of closed eyelids and hypotonic riboflavin solution. J Cataract Refract Surg. 2013; 39: 1179-1183. doi: 10.1016/j.jcrs.2013.03.021
45. Koç M, Uzel M, Koban Y, Tekin K, Taşlpnar A, Yilmazbaş P. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin corneas: Short-term results. Cornea. 2016; 35(3): 350-354. doi: 10.1097/ICO.0000000000000701
46. Stojanovic A, Zhou W, Utheim T. Corneal collagen crosslinking with and without epithelial removal: A contralateral study with 0.5% hypotonic riboflavin solution. BioMed Res Int. 2014; 2014: 619398. doi: 101155/2014/619398
47. Larrea X, Büchler P. A transient diffusion model of the cornea for the assessment of oxygen diffusivity and consumption. Invest Ophthalmol Vis Sci. 2009; 50: 1076-1080. doi: 10.1167/iovs.08-2479
48. Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: Failure in an extremely thin cornea. Cornea. 2011; 30: 917-919. doi: 10.1097/ICO.0b013e31820143d1
49. Kling S, Hafezi F. An algorithm to predict the biomechanical stiffening effect in corneal cross-linking. J Refract Surg. 2017; 33(2): 128-136. doi: 10.3928/1081597X-20161206-01
Рецензия
Для цитирования:
Бикбов М.М., Русакова Ю.А., Усубов Э.Л., Рахимова Э.М. Кросслинкинг тонких роговиц: современное видение проблемы. Обзор литературы. Acta Biomedica Scientifica. 2020;5(5):73-80. https://doi.org/10.29413/ABS.2020-5.5.10
For citation:
Bikbov M.M., Rusakova I.A., Usubov E.L., Rakhimova E.M. Crosslinking of Thin Corneas: a Modern Vision of the Problem. Literature Review. Acta Biomedica Scientifica. 2020;5(5):73-80. (In Russ.) https://doi.org/10.29413/ABS.2020-5.5.10