Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы
https://doi.org/10.29413/ABS.2020-5.4.5
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Сердечно-сосудистые патологии являются одними из главных причин смертности пожилых людей в развитых странах. Окислительный стресс, который вызывает мутации митохондриальной ДНК и дисфункции митохондрий, рассматривается как основная причина патологии сердца и других болезней старости. Однако в последние годы прежние парадигмы механизмов старения, окислительного стресса и антиоксидантной защиты подверглись сомнению и в некоторых случаях даже оказались ошибочными. В этом обзоре мы обсуждаем новые данные, которые привели к необходимости пересмотра парадигм. Мы показываем, что, хотя митохондриальная свободно-радикальная теория остаётся верной, радикалом, ответственным за старение, является протонированная форма супероксидного радикала, а именно пергидроксильный радикал, который игнорировался все предыдущие годы. Пергидроксильный радикал инициирует изопростановый путь перекисного окисления (ИППОЛ) полиненасыщенных жирных кислот, которые являются частью фосфолипидов мембраны митохондрий. ИППОЛ был открыт 30 лет назад Робертсом и Морроу в Университете Вандербильта, но механизм его инициации оставался неизвестным. ИППОЛ вызывает образование рацемической смеси сотен биологически активных молекул, названных изопростаны, и очень токсичных молекул, прежде всего изолевугландинов. Мы различаем два типа повреждений, вызванных ИППОЛ в ходе старения. Первый тип связан с окислительным повреждением кардиолипина и фосфатидилэтанаоламина (ФЭА), которые приводят к нарушениям структуры и функций полиферментных комплексов системы окислительного фосфорилирования. Второй тип дисфункций связан с прямым действием продуктов ИППОЛ на лизин-содержащие белки и ФЭА. К этому типу митохондриальных повреждений очевидно принадлежит окислительное повреждение митохондриальной ДНК полимеразы, что приводит к 20-кратному увеличению мутаций мтДНК.
Об авторах
А. В. ПановРоссия
Панов Александр Васильевич – доктор биологических наук, старший научный сотрудник лаборатории патофизиологии
664003, г. Иркутск, ул. Тимирязева, 16
С. И. Дикалов
Соединённые Штаты Америки
Дикалов Сергей Иванович – доцент, директор лаборатории свободных радикалов в медицине отдела клинической фармакологии, Департамент медицины
37232, Нэшвилл, Теннесси, Пирс Авеню 2220
М. А. Даренская
Россия
Даренская Марина Александровна – доктор биологических наук, ведущий научный сотрудник лаборатории патофизиологии
664003, г. Иркутск, ул. Тимирязева, 16
Л. В. Рычкова
Россия
Рычкова Любовь Владимировна – доктор медицинских наук, профессор РАН, член-корреспондент РАН, директор
664003, г. Иркутск, ул. Тимирязева, 16
Л. И. Колесникова
Россия
Колесникова Любовь Ильинична – академик РАН, научный руководитель
664003, г. Иркутск, ул. Тимирязева, 16
С. И. Колесников
Россия
Колесников Сергей Иванович – академик РАН, главный научный сотрудник
664003, г. Иркутск, ул. Тимирязева, 16
Список литературы
1. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009; 2(5-6): 231-237. https://doi.org/10.1242/dmm.001180
2. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007; 92(2): 399-404. https://doi.org/10.1210/jc.2006-0513
3. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002; 7(2): 115-130. https://doi.org/10.1023/a:1015320423577
4. Schaper J, Meiser E, Stammler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985; 56(3): 377-391. https://doi.org/10.1161/01.RES.56.3.377
5. Гурин А.М. Структурно-функциональные особенности сердечной мышечной ткани человека. Современные наукоёмкие технологии. 2009; 11(Прил.): 28-40.
6. Opie LH, Lopaschuk GD. Fuels: aerobic and anaerobic metabolism. In: Opie LH (ed.) Heart Physiology: From Cell to Circulation. Philadelphia: Lippincott Williams & Wilkins; 2004. 306-354.
7. Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997; 77(3): 731-758. https://doi.org/10.1152/physrev.1997.77.3.731
8. Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015; 70(11): 1334-1342. https://doi.org/10.1093/gerona/glv070
9. Panov AV. Synergistic oxidation of fatty acids, glucose and amino acids metabolites by isolated rat heart mitochondria. EC Cardiology. 2018; 5(4): 198-208.
10. Panov AV, Dikalov SI. The mitochondrial metabolism and the age-associated cardiovascular diseases. EC Cardiology. 2018; 5(11): 750-769.
11. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003; 88(6): 2404-2411. https://doi.org/10.1210/jc.2003-030242
12. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007; 92(2): 399-404. https://doi.org/10.1210/jc.2006-0513
13. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998; 78(2): 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
14. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 2006; 1067(1): 10-21. https://doi.org/10.1196/annals.1354.003
15. Ryzhkova AI, Sazonova MA, Sinyov VV, Galitsyna EV, Chicheva MM, Melnichenko AA, et al. Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag. 2018; 14: 1933-1942. https://doi.org/10.2147/TCRM.S154863
16. Volobueva A, Grechko A, Yet S-F, Sobenin I, Orekhov A. Changes in mitochondrial genome associated with predisposition to atherosclerosis and related disease. Biomolecules. 2019; 9(8): 377. https://doi.org/10.3390/biom9080377
17. Pinto M, Moraes CT. Mechanisms linking mtDNA damage and aging. Free Radic Biol Med. 2015; 85: 250-258. https://doi.org/10.1016/j.freeradbiomed.2015.05.005
18. Szczepanowska K, Trifunovic A. Origins of mtDNA mutations in ageing. Essays Biochem. 2017; 61(3): 325-337. https://doi.org/10.1042/EBC20160090
19. DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev. 2017; 33: 89-104. https://doi.org/10.1016/j.arr.2016.04.006
20. Chocron ES, Munkácsya E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age associated disease. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(2): 285-297. https://doi.org/10.1016/j.bbadis.2018.09.035
21. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417(1): 1-13. https://doi.org/10.1042/BJ20081386
22. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016; 100: 14-31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001
23. Sawyer DT, Valentine JS. How super is superoxide? Acc Chem Res. 1981; 14: 393-400. https://doi.org/10.1021/ar00072a005
24. Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends. Endocrinol Metab. 2009; 20(8): 394-401. https://doi.org/10.1016/j.tem.2009.04.004
25. Hernando-Rodriguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (prohibitin) complex. Cells. 2018; 7(12): 238. https://doi.org/10.3390/cells7120238
26. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsh T, Macho A. et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996; 184(3): 1155-1160. https://doi.org/10.1084/jem.184.3.1155
27. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009; 45(6): 643-650. https://doi.org/10.1016/j.ceca.2009.03.012
28. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int. 2011; 58(4): 447-457. https://doi.org/10.1016/j.neuint.2010.12.016
29. Brame CJ, Boutaud O, Davies SS, Yang T, Oates JA, Roden D, et al. Modification of proteins by isoketal-containing oxidized phospholipids. J Biol Chem. 2004; 279: 13447-13451. https://doi.org/10.1074/jbc.M313349200
30. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ, 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA. 1990; 87(23): 9383-9387. https://doi.org/10.1073/pnas.87.23.9383
31. Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci. 2013; 4: 494. https://doi.org/10.3389/fpls.2013.00494
32. Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013; 52(4): 590-614. https://doi.org/10.1016/j.plipres.2013.07.002
33. Haines TH. A new look at Cardiolipin. Biochim Biophys Acta. 2009; 1788(10): 1997-2002. https://doi.org/10.1016/j.bbamem.2009.09.008
34. Sathappa M, Alder NN. The ionization properties of cardiolipin and its variants in model bilayers. Biochim Biophys Acta. 2016; 1858(6): 1362-1372. https://doi.org/10.1016/j.bbamem.2016.03.007
35. Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008; 65(16): 2493-2506. https://doi.org/10.1007/s00018-008-8030-5
36. Lewis RN, McElhaney RN. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta. 2009; 1788(10): 2069-2079. https://doi.org/10.1016/j.bbamem.2009.03.014
37. Beyer K, Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985; 24(15): 3821-3826. https://doi.org/10.1021/bi00336a001
38. Van Meer G, de Kroon AI. Lipid map of the mammalian cell. J Cell Sci. 2011; 124(1): 5-8. https://doi.org/10.1242/jcs.071233
39. Lee HJ, Mayette J, Rapoport SI, Bazinet RP. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis. 2006; 5(1): 2. https://doi.org/10.1186/1476-511X-5-2
40. Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry. 2007; 46(21): 6417-6428. https://doi.org/10.1021/bi7004015
41. Morrow JD, Awad JA, Wu A, Zackert WE, Daniel VC, Roberts LJ, 2nd. Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J Biol Chem. 1996, 271(38): 23185-23190. https://doi.org/10.1074/jbc.271.38.23185
42. Roberts LJ, Montine TJ, Markesbery WR, Tapper AR, Hardy P, Chemtob S, et al. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem. 1998; 273(22): 13605-13612. https://doi.org/10.1074/jbc.273.22.13605
43. Wittig I, Schägger H. Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biophys Biochim Acta. 2009; 1787(6): 672-680. https://doi.org/10.1016/j.bbabio.2008.12.016
44. Bultema JB, Braun HP, Boekema EJ, Kouril R. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory chain supercomplexes from tomato. Biochim Biophys Acta. 2009; 1787(1): 60-67. https://doi.org/10.1016/j.bbabio.2008.10.010
45. Petersen MW, Skovenborg EL, Rask CU, Hoeg MD, Ornbol E, Schroder A. Physical comorbidity in patients with multiple functional somatic syndromes. A register-based case-control study. J Psychosom Res. 2018; 104: 22-28. https://doi.org/10.1016/j.jpsychores.2017.11.005
46. Roberts LJ, Montine TJ, Markesbery WR, Tapper AR, Hardy P, Chemtob S, et al. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem. 1988; 273(22): 13605-13612. https://doi.org/10.1074/jbc.273.22.13605
47. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ. Noncyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA. 1992; 89(22): 10721-10725. https://doi.org/10.1073/pnas.89.22.10721
48. Brame CJ, Boutaud O, Davies SS, Yang T, Oates JA, Roden D, et al. Modification of proteins by isoketal-containing oxidized phospholipids. J Biol Chem. 2004; 279(14): 13447-13451. https://doi.org/10.1074/jbc.M313349200
49. Musiek ES, Yin H, Milne GL, Morrow JD. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids. 2005; 40(10): 987-994. https://doi.org/10.1007/s11745-005-1460-7
50. Montine TJ, Morrow JD. Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am J Pathol. 2005; 166(5): 1283-1285. https://doi.org/10.1016/S0002-9440(10)62347-4
51. Montuschi P, Barnes PJ, Roberts LJ. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004; 18(15): 1791-1800. https://doi.org/10.1096/fj.04-2330rev
52. Davies SS, Roberts LJ. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Rad Biol Med. 2011; 50(5): 559-566. https://doi.org/10.1016/j.freeradbiomed.2010.11.023
53. Panov A. Perhydroxyl radical (HO2•) as inducer of the isoprostane lipid peroxidation in mitochondria. Mol Biol. 2018; 52: 295-305. https://doi.org/10.1134/S0026893318020097
54. Panov AV, Dikalov SI. Cardiolipin, perhydroxyl radicals and lipid peroxidation in mitochondrial dysfunctions and aging. Oxidative medicine and cellular longevity. Forthcoming 2020.
55. Bielski BH, Arudi RL, Sutherland MW. A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem. 1983; 258(8): 4759-4761.
56. Gebicki JM, Bielski BHJ. Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J Am Chem Soc. 1981; 103: 7020-7022. https://doi.org/10.1021/ja00413a066
57. De Grey ADNJ. HO2• the forgotten radical. DNA Cell Biology. 2002; 21(4): 251-257. https://doi.org/10.1089/104454902753759672
58. Haines TH, Dencher NA. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 2002; 528(1-3): 35-39. https://doi.org/10.1016/S0014-5793(02)03292-1
59. Arnarez C, Marrink SJ, Periole X. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep. 2013; 3: 1263. https://doi.org/10.1038/srep01263
60. Bielski BHJ. Reevaluation of the spectral and kinetic properties of HO2• and O2• free radicals. Photochem Photobiol. 1978; 28(4-5): 645-649. https://doi.org/10.1111/j.1751-1097.1978.tb06986.x
61. Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014; 127: 1-27. https://doi.org/10.1016/B978-0-12-394625-6.00001-5
62. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, et al. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell. 2007; 6: 607-618. https://doi.org/10.1111/j.1474-9726.2007.00312.x
63. Pamplona R, Barja B, Portero-Otin M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci. 2002; 959: 475-490. https://doi.org/10.1111/j.1749-6632.2002.tb02118.x
64. Naudi A, Jove M, Ayala V, Portero-Otı´n M, Barja G, Pamplona R. Regulation of membrane unsaturation as antioxidant adaptive mechanisms in long-lived animal species. Free Radic Antioxid. 2011; 1(3): 3-12. https://doi.org/10.5530/ax.2011.3.2
65. Panov A. Mitochondrial production of perhydroxyl radical (HO2•) as inducer of aging and related pathologies. J Biochem Biophys. 2017; 1(1): 105.
66. Lennicke C, Cocheme HM. Redox signaling and ageing insights from Drosophila. Biochem Soc Trans. 2020; 48(2): 367-377. https://doi.org/10.1042/BST20190052
67. Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev. 2018; 44: 33-48. https://doi.org/10.1016/j.arr.2018.03.005
68. Dikalov SI, Dikalova AE. Crosstalk between bitochondrial hyperacetylation and oxidative stress in vascular dysfunction and hypertension. Antioxid Redox Signal. 2019; 31(10): 710-721. https://doi.org/10.1089/ars.2018.7632
69. Harman D. The aging process. Proc Natl Acad Sci USA. 1981; 78(11): 7124-7128. https://doi.org/10.1073/pnas.78.11.7124
70. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009; 2(5-6): 231-237. https://doi.org/10.1242/dmm.001180
71. Morris CW. Academic press dictionary of science and technology. California, San-Diego: Academic Press, Inc.; 1992.
72. Anderson AP, Luo X, Russell W, Yin YW. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res. 2020; 48(2): 817-829. https://doi.org/10.1093/nar/gkz1018
Рецензия
Для цитирования:
Панов А.В., Дикалов С.И., Даренская М.А., Рычкова Л.В., Колесникова Л.И., Колесников С.И. Митохондрии: старение, метаболический синдром и сердечно-сосудистая патология. Становление новой парадигмы. Acta Biomedica Scientifica. 2020;5(4):33-44. https://doi.org/10.29413/ABS.2020-5.4.5
For citation:
Panov A.V., Dikalov S.I., Darenskaya M.A., Rychkova L.V., Kolesnikova L.I., Kolesnikov S.I. Mitochondria: Aging, Metabolic Syndrome and Cardiovascular Diseases. Formation of a New Paradigm. Acta Biomedica Scientifica. 2020;5(4):33-44. (In Russ.) https://doi.org/10.29413/ABS.2020-5.4.5
ISSN 2587-9596 (Online)