Preview

Acta Biomedica Scientifica

Advanced search

Optimization of a Quantitative Real-Time RT-PCR Technique for Evaluation of Concentration of Genomic +RNA of Tick-Borne Encephalitis Virus

https://doi.org/10.29413/ABS.2019-4.5.18

Abstract

Background. The specific detection of genomic/template +RNA and replicative –RNA of tick-born encephalitis virus (TBEV) is necessary to study the mechanisms of viral replication in the cells of reservoir and accidental hosts. However, the current approaches of quantitative reverse transcription – polymerase chain reaction (qRT-PCR) are rather focused on the detection of total viral RNA load in the sample. Thus, the significant optimization is necessary both for RT-PCR and for RNA copy number standard preparation.
Aims. To develop the set of standard samples of synthetic +RNA of TBEV and to optimize qRT-PCR for quantification of genomic +RNA of the virus.
Materials and methods. Fragment of the genomic +RNA of TBEV was synthesized using pTZ57R-T\A plasmid vector with embedded T7 promoter and T7 RNA polymerase. The DNA contamination was removed using RNase-free DNase I treatment followed by additional RNA purification step. Reverse transcription was performed using specific antisense primer 11154R 5`- AGCGGGTGTTTTTCCG-3` and qPCR detection was used according to the modified procedure of M. Schwaiger and P. Cassinotti (2003).
Results. As a result of the amplification of standard samples, the concentration of positive polarity ТBEV RNA, carried out in five independent repetitions on different days, the correlation coefficient R2 between the quantification cycle and the concentration of the standard sample was 0.99, and the efficiency of PCR was 100 %. The coefficient of variation in assessing the inter-test accuracy of determination averaged 2.8 %.
Conclusions. Optimized qRT-PCR procedure and set of +RNA standards allow to determine the concentration of genomic +RNA of TBEV in routine laboratory practice.

About the Authors

N. A. Liapunovа
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Junior Research Officer at the Laboratory of Arthropod-Borne Infections

Timiryazev str. 16, Irkutsk 664003, Russian Federation



M. A. Khasnatinov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Cand. Sc. (Biol.), Leading Research Officer at the Laboratory of Arthropod-Borne Infections

Timiryazev str. 16, Irkutsk 664003, Russian Federation



G. A. Danchinova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Dr. Sc. (Biol.), Head of the Laboratory of Arthropod-Borne Infections

Timiryazev str. 16, Irkutsk 664003, Russian Federation



References

1. Shestopalov NV, Shashina NI, Germant OM, Pakskina ND, Tsarenko VA, Verigina EV, et al. Information letter “Focal infection, pathogens that transmit and spread ticks, and their direct prevention in the Russian Federation (as of 01/01/2019)”. Dezinfektsionnoye delo. 2019; 1(107): 37-44. (In Russ.)

2. Ecker M, Allison SL, Meixner T, Heinz FX. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol. 1999; 80: 179-185. doi: 10.1099/0022-1317-80-1-179

3. Kozlova IV, Demina TV, Tkachev SE, Doroshchenko EK, Lisak OV, Verkhozina MM, et al. Characteristics of the Baikal subtype of tick-borne encephalitis viruses circulating in Eastern Siberia. Acta biomedica scientifica. 2018; 3(4): 53-60. doi: 10.29413/ABS.2018-3.4.9. (In Russ.)

4. Dai X, Shang G, Lu S, Yang J, Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg Microbes Infect. 2018; 7(1): 74. doi: 10.1038/s41426-018-0081-6

5. Wallner G, Mandl CW, Kunz C, Heinz FX. The flavivirus 3’-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology. 1995; 213(1): 169-178. doi: 10.1006/viro.1995.1557

6. Mandl CW, Kunz C, Heinz FX. Presence of poly(A) in a flavivirus: significant differences between the 3’-noncoding regions of the genomic RNAs of tick-borne encephalitis virus strains. J Virol. 1991; 65(8): 4070-4077.

7. Wallner G, Mandl CW, Ecker M, Holzmann H, Stiasny K, Kunz C, Heinz FX. Characterization and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J Gen Virol. 1996; 77: 1035-1042. doi: 10.1099/0022-1317-77-5-1035

8. Chu PW, Westaway EG. Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology. 1985; 140(1): 68-79. doi: 10.1016/0042-6822(85)90446-5

9. Lindenbach BD, Thiel H-J, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds.). Fields Virology, 5th Edition. Lippincott-Raven Publishers, Philadelphia; 2007; 1101-1152.

10. Itkes AV. Polymerase chain reaction. Moscow: Al’teks; 1999. (In Russ.)

11. Paltsev MA. Introduction to molecular medicine. Moscow: Meditsina; 2004. (In Russ.)

12. Carnegie PR. Quality control in the food industries with DNA technologies. Australas Biotechnol. 1994; 4(3): 146-149.

13. De Vega М, Blanco L, Salas M. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage ø29 DNA polymerase. J Mol Biol. 1999; 292(1): 39-51. doi: 10.1006/jmbi.1999.3052

14. Dean FB, Neison JR, Giesier TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiplyprimed rolling circle amplification. Genome Res. 2001; 11(6): 1095-1099. doi: 10.1101/gr.180501

15. Lo АС, Feldman SR. Polymerase chain reaction: basic concepts and clinical applications in dermatology. J Am Acad Dermatol. 1994; 30(2 Pt 1): 250-260. doi: 10.1016/S0190-9622(94)70025-7

16. Little MC, Andrews J, Moore R, Bustos S, Jones L, Embres C, et al. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem. 1999; 45(6): 777-784.

17. Schwaiger M, Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol. 2003; 27(2): 136-145. doi: 10.1016/S1386-6532(02)00168-3

18. Yekimov AN, Shipulin GA, Bochkarev YeG, Ryumin DV. Real-Time PCR. Мoscow: Tsentral’nyy nauchnyy institut epidemiologii Rossiyskoy Federatsii; 2004. URL: http://www.interlabservice.ru/catalog/faq/?id=3422. (In Russ.)

19. Heid CA, Stevens J, Livak KJ, Williams PM. Real-time quantitative PCR. Genome Res. 1996; 6(10): 986-994. doi: 10.1101/gr.6.10.986

20. Khasnatinov MA, Bolotova NA, Milovidov KS, Kondratov IG, Danchinova GA. Replication of RNA of tick-borne encephalitis virus in new transferable cell lines of the natural host Apodemus peninsulae. Molecular Genetics, Microbiology and Virology. 2018; 33(1): 49-54. doi: 10.3103/S0891416818010068. (In Russ.)

21. Khasnatinov MA, Danchinova GA, Zlobin VI, Lyapunov AV, Arbatskaya EV, Chaporgina EA, et al. Tick-borne encephalitis virus in Mongolia. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2012; 4: 9-12. (In Russ.)

22. Chung CT, Niemela SI, Miller RH. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. PNAS. 1998; 86(7): 2172-2175. doi: 10.1073/pnas.86.7.2172

23. Walpole RE, Myers RH, Myers SL, Ye K. Probability & Statistics for Engineers & Scientists, 8th ed. Upper Saddle River: Pearson Education, Inc.; 2007.


Review

For citations:


Liapunovа N.A., Khasnatinov M.A., Danchinova G.A. Optimization of a Quantitative Real-Time RT-PCR Technique for Evaluation of Concentration of Genomic +RNA of Tick-Borne Encephalitis Virus. Acta Biomedica Scientifica. 2019;4(5):116-121. (In Russ.) https://doi.org/10.29413/ABS.2019-4.5.18

Views: 804


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)