Preview

Acta Biomedica Scientifica

Расширенный поиск

Фармакогенетика антидепрессантов: от генетических находок к предсказательным стратегиям

https://doi.org/10.29413/ABS.2019-4.2.5

Полный текст:

Аннотация

Постоянно растущий вклад депрессивных расстройств в глобальную картину заболеваний настоятельно требует повышения эффективности используемых для лечения препаратов и оптимизации терапевтических методов. Антидепрессанты являются наиболее часто назначаемыми препаратами для лечения депрессивных расстройств. Однако выработка стандартизованного фармакотерапевтического подхода осложняется генетической гетерогенностью и отсутствием надёжных биомаркеров для предсказания ответов на терапию, биологической вариабильностью метаболизма лекарств, а также множественными побочными эффектами препаратов. По современным оценкам, до 20 % экспрессируемых в нашем головном мозге генов так или иначе вовлечены в патогенез депрессии. Широкомасштабные генетические и геномные исследования выявили ряд потенциально прогностических генов. Также было показано, что эффективность и переносимость антидепрессантов напрямую зависят от вариабельности в активности ферментов, метаболизирующих медикаменты. Почти все современные антидепрессанты метаболизируются ферментами семейства цитохрома Р450 (семейство CYP). Наиболее многообещающим направлением исследований считается метод Полногеномного Поиска Ассоциаций (GWAS). Он направлен на детальное изучение ассоциаций между геномными вариациями и фенотипическими признаками. В исследованиях такого типа обычно сравнивают геномы депрессивных больных, имеющих разные фенотипы, с геномами контрольной группы, состоящей из аналогичных по возрасту, полу и другим признакам здоровых людей. Следует отметить, что, несмотря на анализ крупных когорт пациентов, в проведённых GWA-исследованиях пока не удаётся надёжно воспроизвести результаты других аналогичных исследований. Грандиозная гетерогенность определяющих развитие депрессии генов и их плейотропный эффект в сочетании с мощным влиянием факторов внешней среды объясняют сложность получения значимых и воспроизводимых результатов. Однако, несмотря на это, активная научная работа в разных направлениях позволяет клиницистам и их пациентам надеяться уже в ближайшие годы получить целый ряд схем скорейшего и гарантированного выхода в ремиссию.

Об авторах

Л. К. Хохлов
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России
Россия

Хохлов Леонид Константинович – доктор медицинских наук, профессор, профессор кафедры психиатрии

150000, г. Ярославль, ул. Революционная, 5


Н. Е. Лукьянов
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России
Россия

Лукьянов Николай Евгеньевич – студент

150000, г. Ярославль, ул. Революционная, 5



Список литературы

1. WHO. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization; 2017.

2. Мосолов С.Н. Клиническое применение современных антидепрессантов. СПб.: МИА; 1995.

3. Fabbri C, Serretti A. Clinical application of antidepressant pharmacogenetics: Considerations for the design of future studies. Neurosci Lett. 2018; pii: S0304-3940(18)30423-3. doi: 10.1016/j.neulet.2018.06.020

4. Outhred T, Das P, Dobson-Stone C, Felmingham KL, Bryant RA, Nathan PJ, et al. The impact of 5-HTTLPR on acute serotonin transporter blockade by escitalopram on emotion processing: Preliminary findings from a randomised, crossover fMRI study. Australian & New Zealand Journal of Psychiatry. 2014; 48(12): 1115-1125. doi: 10.1177/0004867414533837

5. Outhred T, Das P, Dobson-Stone C, Felmingham KL, Bryant RA, Nathan PJ, et al. Impact of 5-HTTLPR on SSRI serotonin transporter blockade during emotion regulation: A preliminary fMRI study. Journal of Affective Disorders. 2016; 196, 11-19. doi: 10.1016/j.jad.2016.02.019

6. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994; 40(2): 288-295.

7. Fava M, Kendler KS. Major depressive disorder. Neuron. 2000; 28(2): 335-341.

8. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M, et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry. 2007; 62(4): 327-331. doi: 10.1016/j.biopsych.2006.09.022

9. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) Pharmacogenetics and Imaging – Pharmacogenetics of Antidepressants association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012; 22(4): 239-258. doi: 10.1016/j.euroneuro.2011.10.003

10. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010; 15(5): 473-500. doi: 10.1038/mp.2008.116

11. Staeker J, Leucht S, Laika B, Steimer W. Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomarkers. 2014; 18(1): 20-31. doi: 10.1089/gtmb.2013.0217

12. Rotberg B, Kronenberg S, Carmel M, Frisch A, Brent D, Zalsman G, et al. Additive effects of 5-HTTLPR (serotonin transporter) and tryptophan hydroxylase 2 G-703T gene polymorphisms on the clinical response to citalopram among children and adolescents with depression and anxiety disorders. J Child Adolesc Psychopharmacol. 2013; 23(2): 117-122. doi: 10.1089/cap.2012.0020

13. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003; 91(4): 267-270.

14. Akimoto H, Oshima S, Sugiyama T, Negishi A, Nemoto T, Kobayashi D. Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav Brain Res. 2018; 359: 342-352. doi: 10.1016/j.bbr.2018.11.017

15. Covington HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci. 29(37): 11451-11460. doi: 10.1523/JNEUROSCI.1758-09.2009

16. Roth TL, Lubin FD, Sodhi M, Kleinman JE. Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta. 2009; 1790(9): 869-877. doi: 10.1016/j.bbagen.2009.06.009

17. Arancio O, Chao MV. Neurotrophins, synaptic plasticity and dementia. Current Opinion in Neurobiology. 2007; 17(3): 325-330. doi: 10.1016/j.conb.2007.03.013

18. Bjorkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology. 2016; 102: 72-79. doi: 10.1016/j.neuropharm.2015.10.034

19. Niitsu T, Fabbri C, Bentini F, Serretti A. Pharmacogenetics in major depression: a comprehensive meta-analysis. Progr Neuropsychopharmacol Biol Psychiatry. 2013; 1(45): 183-194. doi: 10.1016/j.pnpbp.2013.05.011

20. Yan T, Wang L, Kuang W, Xu J, Li S, Chen J, et al. Brain-derived neurotrophic factor Val66Met polymorphism association with antidepressant efficacy: a systematic review and meta-analysis. Asia-Pacific Psychiatry. 2014; 6(3): 241-251. doi: 10.1111/appy.12148

21. Murphy GM Jr, Sarginson JE, Ryan HS, O’Hara R, Schatzberg AF, Lazzeroni LC. BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genom. 2013; 23(6): 301-313. doi: 10.1097/FPC.0b013e328360b175

22. Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007; 275(1-2): 2-12. doi: 10.1016/j.mce.2007.05.018

23. Willour VL, Chen H, Toolan J, Belmonte P, Cutler DJ, Goes FS, et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry. 2009; 14(3): 261-268. doi: 10.1038/sj.mp.4002141

24. Mandelli L, Serretti A. Gene environment interaction studies in depression and suicidal behavior: An update. Neurosci Biobehav Rev. 2013; 37(10-1): 2375-2397. doi: 10.1016/j.neubiorev.2013.07.011

25. Chang HS, Won E, Lee HY, Ham BJ, Lee MS. Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants. Behav Brain Res. 2015; 292: 116-124. doi: 10.1016/j.bbr.2015.06.005

26. Keers R, Bonvicini C, Scassellati C, Uher R, Placentino A, Giovannini C, et al. Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol. 2011; 25(7): 867-874. doi: 10.1177/0269881110376683

27. Lin E, Chen PS, Chang HH, Gean PW, Tsai HC, Yang YK, et al. Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Progr Neuropsychopharmacol Biol Psychiatry. 2009; 33(7): 1167-1172. doi: 10.1016/j.pnpbp.2009.06.015

28. Lee HJ, Cha JH, Ham BJ, Han CS, Kim YK, Lee SH, et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J. 2004; 4(1): 29-33. doi: 10.1038/sj.tpj.6500217

29. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D, et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol. 2003; 13(2): 117-122. doi: 10.1016/S0924-977X(02)00154-2

30. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, et al. Association of a human G-protein beta 3 subunit variant with hypertension. Nat Genet. 1998; 18(1): 45-48. doi: 10.1038/ng0198-45

31. Hu Q, Zhang SY, Liu F, Zhang XJ, Cui GC, Yu EQ, et al. Influence of GNB3 C825T polymorphism on the efficacy of antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2015; 172: 103-109. doi: 10.1016/j.jad.2014.09.039

32. Kato M, Wakeno M, Okugawa G, Fukuda T, Takekita Y, Hosoi Y, et al. Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825T polymorphism in Japanese major depressive patients. Progr Neuro-psychopharmacol Biol Psychiatry. 2008; 32(4): 1041-1044. doi: 10.1016/j.pnpbp.2008.01.019

33. Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR, et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol. 2003; 6(4): 339-346. doi:10.1017/S1461145703003663

34. Spronk D, Arns M, Barnett KJ, Cooper NJ, Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord. 2011; 128(1-2): 41-48. doi: 10.1016/j.jad.2010.06.021

35. Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord. 2006; 90(2-3): 251-256. doi:10.1016/j.jad.2005.11.008

36. Chiesa A, Lia L, Alberti S, Lee SJ, Han C, Patkar AA, et al. Lack of influence of rs4680 (COMT) and rs6276 (DRD2) on diagnosis and clinical outcomes in patients with major depression. Int J Psychiatry Clin Pract. 2014; 18(2): 97-102. doi: 10.3109/13651501.2014.894073

37. Kocabas NA, Faghel C, Barreto M, Kasper S, Linotte S, Mendlewicz J, et al. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study. Int Clin Psychopharmacol. 2010; 25(4): 218-227. doi: 10.1097/YIC.0b013e328338b884

38. Wang Y, Liu X, Yu Y, Han Y, Wei J, Collier D, et al. The role of single nucleotide polymorphism of D2 dopamine receptor gene on major depressive disorder and response to antidepressant treatment. Psychiatry Res. 2012; 200(2-3): 1047-1050. doi: 10.1016/j.psychres.2012.06.024

39. Jha MK, Trivedi MH. Pharmacogenomics and Biomarkers of Depression. In: Handb Exp Pharmacol. Berlin, Heidelberg: Springer; 2018: 1-13. doi: 10.1007/164_2018_171

40. Calati R, Crisafulli C, Balestri M, Serretti A, Spina E, Calabro M, et al. Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Progr Neuropsychopharmacol Biol Psychiatry. 2013; 44: 271-278. doi: 10.1016/j.pnpbp.2013.03.005

41. Powell TR, Schalkwyk LC, Heffernan AL, Breen G, Lawrence T, Price T, et al. Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response. Eur Neuropsychopharmacol. 2013; 23(9): 1105-1114. doi: 10.1016/j.euroneuro.2012.09.009

42. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P, et al. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry. 2010; 67(6): 543-549. doi: 10.1016/j.biopsych.2009.11.004

43. Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, DeRonchi D, et al. Pharmacogenetics of antidepressants. Front Pharmacol. 2011; 2: 6. doi: 10.3389/fphar.2011.00006

44. Altar CA., Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry. 2013; 25(5): 509-533. doi: 10.3109/09540261.2013.825579

45. Muller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013; 25(5): 554-571. doi: 10.3109/09540261.2013.83894

46. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008; 30(4): 474-482. doi: 10.1097/FTD.0b013e31817d6f5d

47. Mrazek DA, Biernacka JM, O’Kane DJ, Black JL, Cunningham JM, Drews MS, et al. CYP2C19 variation and citalopram response. Pharmacogenet Genomics. 2011; 21(1): 1-9.

48. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 Testing in the Clinical Setting. Mol Diagn Ther. 2013; 17(3): 165-184. doi: 10.1007/s40291-013-0028-5

49. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS, et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics. 2010; 11(4): 537-546. doi: 10.2217/pgs.09.168

50. Ji Y, Schaid DJ, Desta Z, Kubo M, Batzler AJ, Snyder K, et al. Citalopram and escitalopram plasma drug and metaboliteconcentrations: genome-wide associations. Br J Clin Pharmacol. 2014; 78(2): 373-383. doi: 10.1111/bcp.12348

51. Hodgson K, Tansey K, Dernovsek MZ, Hauser J, Henigsberg N, Maier W, et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014; 28(2): 133-141. doi: 10.1177/0269881113512041

52. Probst-Schendzielorz K, Viviani R, Stingl JC. Effect of cytochrome P450 polymorphism on the action and metabolism of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol. 2015; 11(8): 1219-1232. doi: 10.1517/17425255.2015.1052791

53. Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry. 2013; 25(5): 509-533. doi: 10.3109/09540261.2013.825579

54. Muller DJ, Kekin I, Kao AC, Brandl EJ. Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry. 2013; 25(5): 554-571. doi: 10.3109/09540261.2013.838944

55. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol. 2000; 20(2): 246-251.

56. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH, et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol. 2008; 65(4): 558-564. doi: 10.1111/j.1365-2125.2007.03052.x

57. Brandl EJ, Tiwari AK, Zhou X, Deluce J, Kennedy JL, Muller DJ, et al. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. Pharmacogenomics J. 2014; 14(2): 176-181. doi: 10.1038/tpj.2013.12

58. Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol. 2008; 18(3): 157-169. doi: 10.1016/j.euroneuro.2007.06.003

59. O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the bloodbrain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012; 165(2): 289-312. doi: 10.1111/j.1476-5381.2011.01557.x

60. Breitenstein B, Bruckl TM, Ising M, Muller-Myhsok B, Holsboer F, Czamara D. ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet. 2015; 168(4): 274-283. doi: 10.1002/ajmg.b.32309

61. Breitenstein B, Scheuer S, Pfister H, Uhr M, Lucae S, Holsboer F, et al. The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectr. 2014; 19(2): 165-175. doi: 10.1017/S1092852913000436

62. García-González J, Tansey KE, Hauser J, Henigsberg N, Maier W, Mors O, et al. Pharmacogenetics of antidepressant response: A polygenic approach. Prog. Neuropsychopharmacol. Biol Psychiatry. 2017; 75: 128-134. doi: 10.1016/j.pnpbp.2017.01.011

63. Bousman CA, Forbes M, Jayaram M, Eyre H, Reynolds CF, Berk M, et al. Antidepressant prescribing in the precision medicine era: a prescriber’s primer on pharmacogenetic tools. BMC Psychiatry. 2017; 17(1): 60. doi: 10.1186/s12888-017-1230-5

64. Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017; 102(1): 37-44. doi: 10.1002/cpt.597

65. Quaranta S, Dupouey J, Colle R, Verstuyft C. Pharmacogenetics of antidepressant drugs: State of the art and clinical implementation – recommendations from the French National Network of Pharmacogenetics. Therapie. 2017; 72(2): 311-318. doi: 10.1016/j.therap.2016.09.018

66. Serretti A. The Present and Future of Precision Medicine in Psychiatry: Focus on Clinical Psychopharmacology of Antidepressants. Clin Psychopharmacol Neurosci. 2018; 16(1): 1-6. doi: 10.9758/cpn.2018.16.1.1

67. Zeier Z, Carpenter LL, Kalin NH, Rodriguez CI, McDonald WM, Widge AS, et al. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am J Psychiatry. 2018; 175(9): 873-886. doi: 10.1176/appi.ajp.2018.17111282

68. Abbott R, Chang DD, Eyre HA, Bousman CA, Merrill DA, Lavretsky H. Pharmacogenetic Decision Support Tools: A New Paradigm for Late-Life Depression? Am J Geriatr Psychiatry. 2018; 26(2): 125-133. doi: 10.1016/j.jagp.2017.05.012

69. Flint J, Kendler KS. The genetics of major depression. Neuron. 2014; 81(5): 1214. doi: 10.1016/j.neuron.2014.02.033

70. Dunn EC, Brown RC, Dai Y, Rosand J, Nugent NR, Amstadter AB, et al. Genetic Determinants of Depression: Recent Findings and Future Directions. Harvard Review of Psychiatry. 2015; 23(1): 1-18. doi: 10.1097/HRP.0000000000000054

71. Kohli MA, Lucae S, Saemann PG, Schmidt MV, Demirkan A, Hek K, et al. The Neuronal Transporter Gene SLC6A15 Confers Risk to Major Depression. Neuron. 2011; 70(2): 252-265. doi: 10.1016/j.neuron.2011.04.005

72. Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR, et al. Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? Biol Psychiatry. 2014; 76(7): 510-512. doi: 10.1016/j.biopsych.2014.07.029

73. Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, et al. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther. 2018; 194: 22-43. doi: 10.1016/j.pharmthera.2018.09.002

74. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T, et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry. 2009; 14(4): 359-375. doi: 10.1038/mp.2008.125

75. Mbarek H, Milaneschi Y, Hottenga JJ, Ligthart L, de Geus EJC, Ehli EA, et al. Genome-Wide Significance for PCLO as a Gene for Major Depressive Disorder. Twin Research and Human Genetics. 2017; 20(4): 267-270. doi: 10.1017/thg.2017.30

76. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR, et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry. 2012; 17(1): 36-48. DOI: 10.1038/mp.2010.109

77. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature Genetics. 2016; 48(9): 1031-1036. doi: 10.1038/ng.3623


Для цитирования:


Хохлов Л.К., Лукьянов Н.Е. Фармакогенетика антидепрессантов: от генетических находок к предсказательным стратегиям. Acta Biomedica Scientifica. 2019;4(2):33-43. https://doi.org/10.29413/ABS.2019-4.2.5

For citation:


Khokhlov L.K., Lukyanov N.E. Pharmacogenetics of Antidepressants: from Genetic Findings to Predictive Strategies. Acta Biomedica Scientifica. 2019;4(2):33-43. (In Russ.) https://doi.org/10.29413/ABS.2019-4.2.5

Просмотров: 51


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)