Gonadoliberin – Synthesis, Secretion, Molecular Mechanisms and Targets of Action
https://doi.org/10.29413/ABS.2019-4.2.1
Abstract
Decapeptide gonadoliberin (GnRH) is the most important regulator of the hypothalamic-pituitary-gonadal (HPG) axis that controls the synthesis and secretion of the luteinizing and follicle-stimulating hormones by gonadotrophs in the adenohypophysis. GnRH is produced by the specialized hypothalamic neurons using the site-specific proteolysis of the precursor protein and is secreted into the portal pituitary system, where it binds to the specific receptors. These receptors belong to the family of G protein-coupled receptors, and they are located on the surface of gonadotrophs and mediate the regulatory effects of GnRH on the gonadotropins production. The result of GnRH binding to them is the activation of phospholipase C and the calcium-dependent pathways, the stimulation of different forms of mitogen-activated protein kinases, as well as the activation of the enzyme adenylyl cyclase and the triggering of cAMP-dependent signaling pathways in the gonadotrophs. The gonadotropins, kisspeptin, sex steroid hormones, insulin, melatonin and a number of transcription factors have an important role in the regulation of GnRH1 gene expression, which encodes the GnRH precursor, as well as the synthesis and secretion of GnRH. The functional activity of GnRH-producing neurons depends on their migration to the hypothalamic region at the early stages of ontogenesis, which is controlled by anosmin, ephrins, and lactosamine-rich surface glycoconjugate. Dysregulation of the migration of GnRH-producing neurons and the impaired production and secretion of GnRH, lead to hypogonadotropic hypogonadism and other dysfunctions of the reproductive system. This review is devoted to the current state of the problem of regulating the synthesis and secretion of GnRH, the mechanisms of migration of hypothalamic GnRH-producing neurons at the early stages of brain development, the functional activity of the GnRH-producing neurons in the adult hypothalamus and the molecular mechanisms of GnRH action on the pituitary gonadotrophs. New experimental data are analyzed, which significantly change the current understanding of the functioning of GnRH-producing neurons and the secretion of GnRH, which is very important for the development of effective approaches for correcting the functions of the HPG axis.
About the Authors
A. O. ShpakovRussian Federation
Aleksandr O. Shpakov – Dr. Sc. (Biol.), Head of the Laboratory of Molecular Endocrinology and Biochemistry
SCOPUS ID: 35231150500, РИНЦ SPIN-код: 6335-8311, AuthorID: 87662
prospekt Toreza 44, Saint Petersburg 194223
K. V. Derkach
Russian Federation
Kira V. Derkach – Cand. Sc. (Biol.), Leading Research Officer at the Laboratory of Molecular Endocrinology and Biochemistry
SCOPUS ID: 6603743572, РИНЦ SPIN-код: 6925-1558, AuthorID: 83183
prospekt Toreza 44, Saint Petersburg 194223
References
1. Ikemoto T, Park MK. Molecular and evolutionary characterization of the GnRH-II gene in the chicken: distinctive genomic organization, expression pattern, and precursor sequence. Gene. 2006; 368: 28-36. doi:10.1016/j.gene.2005.10.004
2. Sasaki K, Norwitz ER. Gonadotropin-releasing hormone/ gonadotropin-releasing hormone receptor signaling in the placenta. Curr Opin Endocrinol Diabetes Obes. 2011; 18: 401-408. doi: 10.1097/MED.0b013e32834cd3b0
3. Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci. 2005; 88: 5-28. doi:10.1016/j.anireprosci.2005.05.032
4. Lee VH, Lee LT, Chow BK. Gonadotropin-releasing hormone: regulation of the GnRH gene. FEBS J. 2008; 275: 5458-5478. doi: 10.1111/j.1742-4658.2008.06676.x
5. Leclerc GM, Boockfor FR. Calcium influx and DREAM protein are required for GnRH gene expression pulse activity. Mol Cell Endocrinol. 2007; 267: 70-79. doi: 10.1016/j.mce.2006.12.040
6. Eraly SA, Nelson SB, Huang KM, Mellon PL. Oct-1 binds promoter elements required for transcription of the GnRH gene. Mol Endocrinol. 1998; 12: 469-481. doi:10.1210/mend.12.4.0092
7. Clark ME, Mellon PL. The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron-specific enhancer. Mol Cell Biol. 1995; 15(11): 6169-6177. doi: 10.1128/MCB.15.11.6169
8. Hrabovszky E, Kalló I, Szlávik N, Keller E, Merchenthaler I, Liposits Z. Gonadotropin-releasing hormone neurons express estrogen receptor-beta. J Clin Endocrinol Metab. 2007; 92(7): 2827-2830. doi: 10.1210/jc.2006-2819
9. Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology.2006; 147(3): 1154-1158. doi: 10.1210/en.2005-1282
10. Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol. 2010; 31(3): 322-340. doi: 10.1016/j.yfrne.2010.04.002
11. DiVall SA, Radovick S, Wolfe A. Egr-1 binds the GnRH promoter to mediate the increase in gene expression by insulin. Mol Cell Endocrinol. 2007; 270(1-2): 64-72. doi: 10.1016/j.mce.2007.02.007
12. Roy D, Angelini NL, Fujieda H, Brown GM, Belsham DD. Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology.2001; 142(11): 4711-4720. doi: 10.1210/endo.142.11.8464
13. Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant TM, Zeleznik AJ. (Eds.) Knobil and Neill’s Physiology of Reproduction. USA, San Diego: Elsevier Inc; 2015: 399-467.
14. Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol. 2011; 32(1): 43-52. doi: 10.1016/j.yfrne.2010.07.005
15. Esteban PF, Murcia-Belmonte V, García-González D, de Castro F. The cysteine-rich region and the whey acidic protein domain are essential for anosmin-1 biological functions. J Neurochem. 2013; 124(5): 708-720. doi: 10.1111/jnc.12104
16. Bless E, Raitcheva D, Henion TR, Tobet S, Schwarting GA. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur J Neurosci. 2006; 24(3): 654-660. doi: 10.1111/j.1460-9568.2006.04955.x
17. Kramer PR, Wray S. Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons. Genes Dev. 2000; 14: 1824-1834. doi: 10.1101/gad.14.14.1824.
18. Gamble JA, Karunadasa DK, Pape JR, Skynner MJ, Todman MG, Bicknell RJ, et al. Disruption of ephrin signaling associates with disordered axophilic migration of the gonadotropin-releasing hormone neurons. J Neurosci. 2005; 25(12): 3142-3150. doi: 10.1523/JNEUROSCI.4759-04.2005
19. Hu Y, Poopalasundaram S, Graham A, Bouloux PM. GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110α isoform in chick embryo. Endocrinology.2013; 154(1): 388-399. doi: 10.1210/en.2012-1555
20. Maeda K, Ohkura S, Uenoyama Y, Wakabayashi Y, Oka Y, Tsukamura H, et al. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res. 2010; 1364: 103-115. doi: 10.1016/j.brainres.2010.10.026
21. Ezzat A, Pereira A, Clarke IJ. Kisspeptin is a component of the pulse generator for gonadotropin releasing hormone (GnRH) secretion in female sheep but not THE pulse generator. Endocrinology.2015; 156(5): 1828-1837. doi: 10.1210/en.2014-1756
22. Limonta P, Marelli MM, Moretti R, Marzagalli M, Fontana F, Maggi R. GnRH in the human female reproductive axis. Vitam Horm. 2018; 107: 27-66. doi: 10.1016/bs.vh.2018.01.003
23. Glanowska KM, Burger LL, Moenter SM. Development of gonadotropin-releasing hormone secretion and pituitary response. J Neurosci. 2014; 34(45): 15060-15069. doi: 10.1523/JNEUROSCI.2200-14.2014
24. Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol. 2018; 463: 131-141. doi: 10.1016/j.mce.2017.10.015
25. Czieselsky K, Prescott M, Porteous R, Campos P, Clarkson J, Steyn FJ, et al. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology. 2016; 157(12): 4794-4802. doi: 10.1210/en.2016-1351
26. Clarke SA, Dhillo WS. Kisspeptin across the human lifespan: evidence from animal studies and beyond. J Endocrinol. 2016; 229(3): R83-R98. doi: 10.1530/JOE-15-0538
27. Dhillo W, Chaudhuri O, Patterson M, Thompson E, Murphy K, Badman M, et al. Kisspeptin-54 stimulates the hypothalamic-pituitary-gonadal axis in human males. J Clin Endocrinol Metab. 2005; 90(12): 6609-6615. doi: 10.1210/jc.2005-1468
28. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010; 31(11): 1984-1998. doi: 10.1111/j.1460-9568.2010.07239.x
29. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA.2005; 102(6): 2129-2134. doi: 10.1073/pnas.0409822102
30. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003; 349: 1614-1627. doi: 10.1056/NEJMoa035322
31. Wahab F, Ullah F, Chan YM, Seminara SB, Shahab M. Decrease in hypothalamic Kiss1 and Kiss1r expression: a potential mechanism for fasting-induced suppression of the HPG axis in the adult male rhesus monkey (Macaca mulatta). Horm Metab Res. 2011; 43(2): 81-85. doi: 10.1055/s-0030-1269852
32. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/obmouse. J Neuroendocrinol. 2006; 18(4): 298-303. doi: 10.1111/j.1365- 2826.2006.01417.x
33. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology.2005; 146(7): 2976-2984. doi: 10.1210/en.2005-0323
34. Krsmanovic LZ, Hu L, Leung PK, Feng H, Catt KJ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab. 2009; 20(8): 402-408. doi: 10.1016/j.tem.2009.05.002
35. Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev. 2008; 57(2): 277-287. doi: 10.1016/j.brainresrev.2007.05.006
36. Voliotis M, Garner KL, Alobaid H, Tsaneva-Atanasova K, McArdle CA. Gonadotropin-releasing hormone signaling: An information theoretic approach. Mol Cell Endocrinol. 2018; 463: 106-115. doi: 10.1016/j.mce.2017.07.028
37. Cheng CK, Leung PC. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev. 2005; 26(2): 283-306. doi: 10.1210/er.2003-0039
38. Lethimonier C, Madigou T, Munoz-Cueto JA, Lareyre JJ, Kah O. Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. Gen Comp Endocrinol. 2004; 135(1): 1-16. doi: 10.1016/j.ygcen.2003.10.007
39. Tsutsumi M, Laws SC, Rodic V, Sealfon SC. Translational regulation of the gonadotropin-releasing hormone receptor in T3-1 cells. Endocrinology.1995; 136(3): 1128-1136. doi: 10.1210/endo.136.3.7867566
40. Lahlou N, Carel JC, Chaussain JL, Roger M. Pharmacokinetics and pharmacodynamics of GnRH agonists: clinical implications in pediatrics. J Pediatr Endocrinol Metab. 2000; 13(Suppl 1): 723-737.
41. Cheng CK, Chow BK, Leung PC. An activator protein 1-like motif mediates 17beta-estradiol repression of gonadotropin-releasing hormone receptor promoter via an estrogen receptor alpha-dependent mechanism in ovarian and breast cancer cells. Mol Endocrinol. 2003: 17(12): 2613-2629. doi: 10.1210/me.2003-0217
42. Pratap A, Garner KL, Voliotis M, Tsaneva-Atanasova K, McArdle CA. Mathematical modeling of gonadotropin-releasing hormone signaling. Mol Cell Endocrinol. 2017; 449: 42-55. doi: 10.1016/j.mce.2016.08.022
43. Lim S, Luo M, Koh M, Yang M, bin Abdul Kadir MN, Tan JH, et al. Distinct mechanisms involving diverse histone deacetylases repress expression of the two gonadotropin beta-subunit genes in immature gonadotropes, and their actions are overcome by gonadotropin-releasing hormone. Mol Cell Biol. 2007; 27(11): 4105-4120. doi: 10.1128/MCB.00248-07
44. Liu F, Usui I, Evans LG, Austin DA, Mellon PL, Olefsky JM, et al. Involvement of both G q/11 and G s proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J Biol Chem. 2002; 277(35): 32099-32108. doi: 10.1074/jbc.M203639200
45. Kanasaki H, Bedecarrats GY, Kam KY, Xu S, Kaiser UB. Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology.2005; 146(12): 5503-5513. doi: 10.1210/en.2004-1317
46. Zhang T, Roberson MS. Role of MAP kinase phosphatases in GnRH-dependent activation of MAP kinases. J Mol Endocrinol. 2006; 36(1): 41-50. doi: 10.1677/jme.1.01881
47. Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne).2013; 4: 180. doi: 10.3389/fendo.2013.00180
48. Ciccone NA, Xu SY, Lacza T, Carroll RS, Kaiser UB. Frequency-dependent regulation of follicle-stimulating hormone beta by pulsatile gonadotropin-releasing hormone is mediated by functional antagonism of bZIP transcription factors. Mol Cell Biol. 2010; 30(4): 1028-1040. doi: 10.1128/MCB.00848-09
49. Shakov AO. Glycosylation of gonadotrophin as the most important mechanism of regulation of their activity. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2017; 103(9): 1004-1021. (In Russian)
50. Bousfield GR, Dias JA. Synthesis and secretion of gonadotropins including structure-function correlates. Rev Endocr Metab Disord. 2011; 12(4): 289-302. doi: 10.1007/s11154-011-9191-3
Review
For citations:
Shpakov A.O., Derkach K.V. Gonadoliberin – Synthesis, Secretion, Molecular Mechanisms and Targets of Action. Acta Biomedica Scientifica. 2019;4(2):7-15. (In Russ.) https://doi.org/10.29413/ABS.2019-4.2.1