Preview

Acta Biomedica Scientifica

Advanced search

Evaluation of detoxication arsenic salt solution by humates by biotesting

Abstract

We investigated, toxicity and detoxification of model solutions of arsenic salts (Na3AsO4) by biotesting. Decreasing the toxicity of arsenic using humic substances («Powhumus», «Lignohumate», and «Humate-80») is shown. The possibility of use of humic substances to detoxify arsenic contamination, in model experiments is studied. To study the possibility of detoxification model contamination by salt of arsenic we used humic substances Powhumus (humate from leonardite «Humintech Ltd», Germany), Humate-80 (potassium, humate LLC «Agricultural Technology») and. Lignohumate (potassium, humate «SPA «RET»). As test objects seeds of Lepidium. sativum. L. (JSC «Irkutsk seeds») and. algae (Scenedesmus quadricauda (Turp.) Breb.) were taken. Toxicity was evaluated by effect on seed germination and. root length of L. sativum, the change in intensity of chlorophyll fluorescence of algae cells S. quadricauda. The significance of differences was determined, by Student's test. The table shows the mean values and. standard deviations for p > 0,95. Sodium arsenite at a concentration, of 8 mg/cdm inhibited seed germination of cress to 70,1 ± 6,9 %. The content of 9 mg/cdm. Na3AsO4 reduced, the number of germinated seeds to 75,1 ± 6,6 %. LC50 for this method was equal 5,7 mg/cdm. In applying the HS in a concentration, of 0,2 g/cdm a decrease toxicity of sodium arsenite to 25,3 ± 2,7 % was observed. The most effective model in reducing the toxicity of arsenic contamination was observed at a concentration of Powhumus 1,0 g/dm3 - the number of germinated, seeds was 90,1 ± 8,7 %. The next stage was the bioassay using the registration reducing chlorophyll fluorescence of algae cells S. quadricauda. Value of LC50 for this method was 1,5 mg/cdm. The concentration of sodium arsenite 1,8 and 1,5 mg/ cdm suppressed, levels of chlorophyll fluorescence by more than 30 % (the level of chlorophyll fluorescence was 26,4 ± 3,2 % and. 54,5 ± 6,1 % respectively). Powhumus in concentration of 0,05 g/cdm reduced toxicity of samples for 36,7 ± 3,9 % and. 31,8 ± 3,4 %, respectively. Bioassay method of changing the intensity of chlorophyll fluorescence of cells of algae S. quadricauda showed greater sensitivity and. speed of the response than the method of assessing the impact on seed, germination. and seedling root length of L. sativum.

About the Author

A. S. Konovalov
Байкальский музей ИНЦ СО РАН
Russian Federation


References

1. Методика определения токсичности вод, водных вытяжек из почв, осадков сточных вод и отходов по изменению уровня флуоресценции хлорофилла и численности клеток водорослей. -М.: Акварос, 2007. - 48 с.

2. Методика определения токсичности отходов, почв, осадков сточных, поверхностных и фунтовых вод методом блокирования с использованием равноресничные инфузории (Paramecium caudatum Ehrenberg) // ФР. 1.39.2006.02506 ПНДФ 14.1:2:3.13-06 16.1:2.3:3.10-06 М.: МГУ им. М.В. Ломоносова. - 2006. - 31 с.

3. Почва, очистка населенных мест, отходы производства и потребления, санитарная охрана почвы: Предельно допустимые концентрации (ПДК) химических веществ в почве. ГН 2.1.7.2041-06. - М., 2006.

4. Руководство по определению методом биотестирования токсичности вод, донных отложений, загрязняющих веществ и буровых растворов. - М.: РЭФИА, НИА-Природа, 2002. - 118 с.

5. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности. ГОСТ 12.1.007-76

6. Arsenic in the environment - Part I: Cycling and characterization / ed. J.O. Nriagu. - New York: John Wiley & Sons, Inc., 1994.

7. Buschmann J., Kappeler A., Indauer U., Kistler D. et al. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum // Environ. Sci. Technol. - 2006. -Vol. 40. - P. 6015-6020.

8. Haw-Tarn Lin, Wang M.C., Gwo-Chen Li Complexation of arsenate with humic substance in water extract of compost // Chemosphere. - 2004. -Vol. 56. - P. 1105 - 1112.

9. Humic substances: structures, models and functions / Eds: E.A. Ghabbour, G. Davies. - Cambridge: Royal Society of Chemistry, 2001.

10. Perminova I., Grechishcheva N., Kovalevskii D., Kudryavtsev A. et al. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons // Environmental science and technology. - 2001. - Vol. 35, N 19. - P. 3841 -3848.

11. Saada A., Breeze D., Crouzet C., Cornu S. et al. Adsorption of arsenic (V) on kaolinite and on kaolinite-humic acid complexes. Role of humic acid nitrogen groups // Chemosphere. - Vol. 51. - 2003. - P. 757 - 763.

12. Steinberg C.E.W. Ecology of humic substances in freshwaters. - Heidelberg: Springer, 2003.

13. Stom D.I., Effect of Polyphenols on Shoot and Root Growth and on Seed Germination // Biologia Plantarum. - 1982. - Vol. 24 (1). - P. 1-6.

14. Stom D.I., Geel T.A., Schachova G.V., Kuznetzov A.M. et al. Bioluminescent method in studying the complex effect of the various components // Archives of Environ. Contam. Toxicol. - 1992. - Vol. 22. -P. 203 - 208.

15. Tan K.H. Humic matter in soil and the environment. Principles and Controversies. - New York: Marcel Dekker Inc., 2003.

16. Warwick P., Inam E., Evans N. Arsenic's interaction with humic acid. - Department of Chemistry, Loughborough University, 2004.


Review

For citations:


Konovalov A.S. Evaluation of detoxication arsenic salt solution by humates by biotesting. Acta Biomedica Scientifica. 2013;(2(1)):115-119. (In Russ.)

Views: 475


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)