New data on infection of Haemaphysalis concinna with tick-borne infection agents in humans and animals in the territory of Baikal region
https://doi.org/10.29413/ABS.2025-10.3.8
Abstract
Background. In recent years, the tick Haemaphysalis concinna has drawn increased attention from researchers due to its expanding geographic range and its growing role in the transmission of diseases of various etiologies to humans and animals. However, studies on the infection of H. concinna with tick-borne pathogens affecting humans and animals in the Baikal region have been minimal, despite its known capacity to carry at least 40 pathogen species pathogenic to humans.
The aim. To investigate the infection of Haemaphysalis concinna with tick-borne pathogens affecting humans and animals in the Baikal region.
Materials and Methods. A total of 998 specimens of H. concinna ticks collected from natural habitats in the Baikal region were analyzed by PCR for the presence of markers of various viral, bacterial, and protozoan pathogens.
Results. In the examined H. concinna ticks, the following pathogens were detected: Kemerovo virus RNA (1.1 %), Borrelia burgdorferi sensu lato (1.3 %), Borrelia miyamotoi (0.5 %), Ehrlichia sp. / Anaplasma sp. (3.7 %), Rickettsia sibirica (1.6 %), Rickettsia raoultii (2.8 %), «Candidatus R. tarasevichiae» (32.6 %) and Babesia spр. (3.5 %). Tickborne encephalitis virus (TBEV) RNA was not detected in this study; however, in earlier PCR-based investigations, TBEV RNA was found in 0.6 ± 0.6 % of H. concinna samples from the Baikal region. In one tick sample, the nucleotide sequence of the groESL operon (1315 bp) was identified and found to be identical to sequences of Ehrlichia muris. Based on 18S rRNA gene sequence analysis, Babesia species genetically close to small ruminant piroplasms – Babesia crassa and Babesia motasi – were identified. For the first time, a Babesia sp. DNA sample was detected with nucleotide sequences identical to the Kh-Hc222 strain (KJ486568), previously identified in Khabarovsk Krai.
Conclusion. The data obtained underscore the need for continuous monitoring of H. concinna tick populations in the Baikal region and further investigation into their infection with both well-known and newly identified vector-borne pathogens.
Keywords
About the Authors
O. V. SuntsovaRussian Federation
Olga V. Suntsova – Cand. Sc. (Biol.), Research Officer at the Laboratory of molecular epidemiology and genetic diagnostics
Timiryazeva str., 16, Irkutsk 664003
V. A. Rar
Russian Federation
Vera A. Rar – Dr. Sc. (Biol.), Leading Research Officer
Lavrentyeva av., 8, Novosibirsk 630090
O. V. Lisak
Russian Federation
Oksana V. Lisak – Junior Research Officer at the Laboratory of molecular epidemiology and genetic diagnostics
Timiryazeva str., 16, Irkutsk 664003
E. K. Doroshchenko
Russian Federation
Elena K. Doroshchenko – Cand. Sc. (Biol.), Research Officer at the Laboratory of molecular epidemiology and genetic diagnostics
Timiryazeva str., 16, Irkutsk 664003
N. A. Arefieva
Russian Federation
Nadezhda A. Arefieva – Junior Research Officer at the Laboratory of molecular epidemiology and genetic diagnostics
Timiryazeva str., 16, Irkutsk 664003
I. V. Kozlova
Russian Federation
Irina V. Kozlova – Dr. Sc. (Med.), Head of the Laboratory of molecular epidemiology and genetic diagnostics
Timiryazeva str., 16, Irkutsk 664003
References
1. Rubel F, Brugger K, Walter M, Vogelgesang JR, Didyk YM, Fu S, et al. Geographical distribution, climate adaptation and vector competence of the Eurasian hard tick Haemaphysalis concinna. Ticks Tick Borne Dis. 2018; 9(5): 1080-1089. doi: 10.1016/j.ttbdis.2018.04.002
2. Liu J, Han XY, Ye RZ, Xu Q, Wang XY, Li ZH, et al. An integrated data analysis reveals distribution, hosts, and pathogen diversity of Haemaphysalis concinna. Parasit Vectors. 2024; 17(1): 92. doi: 10.1186/s13071-024-06152-5
3. Zhao GP, Wang YX, Fan ZW, Ji Y, Liu MJ, Zhang WH, et al. Mapping ticks and tick-borne pathogens in China. Nat Commun. 2021; 12(1): 1075. doi: 10.1038/s41467-021-21375-1
4. Kholodilov IS, Belova OA, Morozkin ES, Litov AG, Ivannikova AY, Makenov MT, et al. Geographical and tickdependent distribution of FlaviLike Alongshan and Yanggou tick viruses in Russia. Viruses. 2021; 13: 458. doi: 10.3390/v13030458
5. Cai X, Cai X, Xu Y, Shao Y, Fu L, Men X, et al. Virome analysis of ticks and tick-borne viruses in Heilongjiang and Jilin Provinces, China. Virus Res. 2023; 323: 199006. doi: 10.1016/j.virusres.2022.199006
6. Li D, Li J, Wang R, Zhang W, Nie K, Yin Q, et al. Detection and Genetic Analysis of Songling Virus in Haemaphysalis concinna near the China-North Korea Border. Zoonoses. 2024; 4(1). doi: 10.15212/ZOONOSES-2024-0004
7. Wu Y, Zhou Q, Mao M, Chen H, Qi R. Diversity of species and geographic distribution of tick-borne viruses in China. Front Microbiol. 2024; 15: 1309698. doi: 10.3389/fmicb.2024.1309698
8. Viana DS, Santamaría L, Figuerola J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 2016; 31: 763–75. doi: 10.1016/j.tree.2016.07.005
9. Flaisz B, Sulyok KM, Kováts D, Kontschán J, Csörgő T, Csipak Á, et al. Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary refectphylogeographic connections with Siberia and the Far East. Ticks Tick Borne Dis. 2017; 8: 666-70. doi: 10.1016/j.ttbdis.2017.04.013
10. Keve G, Sándor AD, Hornok S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: review of literature data. Front. Vet. Sci. 2022; 9: 928756. doi: 10.3389/fvets.2022.928756
11. Doroshchenko EK, Lisak OV, Suntsova OV, Savinova JS, Kozlova IV. Data on the distribution of the Haemaphysalis concinna tick in the Irkutsk region and the Republic of Buryatia. Acta Biomedica Scientifica. 2023; 8(4): 80-91. (In Russ.). doi: 10.29413/ABS.2023-8.4.9
12. Danchinova GA, Khasnatinov MA, Shulunov SS, Arbatskaya EV, Badueva LB, Suntsova OV, et al. Fauna and ecology of populations of ixodid ticks, carriers of tick-borne infections in the Baikal region. Acta Biomedica Scientifica. 2007; 3S(55): 86-89. (In Russ.).
13. Vershinin EA, Melnikova OV, Morozov IM. Ticks of the genus Haemaphysalis in the southern part of the Baikal region. Izvestiya Irkutsk State University. Series “Biology. Ecology”. 2014; 8: 92–95. (In Russ.).
14. Tkachev SE, Demina TV, Dzhioev YP, Kozlova IV, Verkhozina MM, Doroshchenko EK, et al. Genetic studies of tick-borne encephalitis virus strains from Western and Eastern Siberia. In: Růžek D, et al., editors. Flavivirus encephalitis. Croatia: In Tech. 2011; 235–254. doi: 10.5772/25024
15. Tkachev SE, Tikunov AY, Babkin IV, Livanova NN, Livanov SG, Panov VV, et al. Occurrence and genetic variability of Kemerovo virus in Ixodes ticks from different regions of Western Siberia, Russia and Kazakhstan. Infect Genet Evol. 2017; 47: 56–63. doi: 10.1016/j.meegid.2016.11.007
16. Rar V, Livanova N, Tkachev S, Kaverina G, Tikunov A, Sabitova Y, et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasit Vectors. 2017; 10(1): 258. doi: 10.1186/s13071-017-2186-5
17. Igolkina Y, Rar V, Vysochina N, Ivanov L, Tikunov A, Pukhovskaya N, et al. Genetic variability of Rickettsia spp. in Dermacentor and Haemaphysalis ticks from the Russian Far East. Ticks and Tick-borne Diseases. 2018; 9(6): 1594-1603. doi: 10.1016/j.ttbdis.2018.07.015
18. ITOL. URL: https://itol.embl.de/ [date of access: May 21, 2025].
19. Yakovchitc N, Bondarenko E, Adelshin R, Melnikova O, Vershinin E, Morozov I, et al. Detection of Rickettsial DNA in Ticks in Irkutsk Region. Epidemiology and Vaccinal Prevention. 2015; 14(6): 43-46. (In Russ.). doi: 10.31631/2073-3046-2015-14-6-43-46
20. Rar VA, Epikhina TI, Suntsova OV, Kozlova IV, Lisak OV, Pukhovskaya NM, et al. Genetic variability of Babesia parasites in Haemaphysalis spp. and Ixode spersulcatus ticks in the Baikal region and Far East of Russia. Infect Genet Evol. 2014; 28: 270-5. doi: 10.1016/j.meegid.2014.10.010
21. Lyapunov AV, Khasnatinov MA, Danchinova GA, Chaporgina EA, Arbatskaya EV, Shulunov SS, et al. Epidemiological role of ticks of the genera Dermacentor and Haemaphysalis in the Baikal region. Izvestiya Irkutsk State University. Series “Biology. Ecology”. 2011; 4(4): 92–95 (In Russ.).
22. Riedl H, Kozuch O, Sixl W, Schmeller E, Nosek J. Isolation of the tick-borne encephalitis virus (TBE-virus) from the tick Haemaphysalis concinna Koch. Arch HygBakteriol. 1971; 154(6): 610-611.
23. Kozuch O, Nosek J. Experimental transmission of tick-borne encephalitis (TBE) virus by Haemaphysalis concinna ticks. Acta Virol. 1980; 24(5): 377.
24. Verkhozina MM, Zlobin VI, Kozlova IV, Doroshchenko EK, Lisak OV, Demina TV, et al. Molecular epidemiology and ecology of tick-borne encephalitis virus in Eastern Siberia: Monograph. Novosibirsk: Publ.ANS «SibAk». 2017; 298. (In Russ.).
25. Melnikova OV. Dynamics of the parasitic system of tick-borne encephalitis in the Baikal region and its impact on population morbidity: diss. doc. biol. sciences: 03.02.08 Irkutsk State University, Irkutsk, 2018 – 302 p. (In Russ.).
26. Chumakov MP. Report on the isolation from Ixodes persulcatus ticks and from patients in western Siberia of a virus differing from the agent of tick-borne encephalitis. Acta Virol. 1963; 7: 82-83.
27. Dedkov VG, Markelov ML, Gridneva KA, Bekova MV, Gmyl AP, Kozlovskaya LI, et al. Prevalence of Kemerovo virus in ixodid ticks from the Russian Federation. Ticks Tick Borne Dis. 2014; 5(6): 651-655. doi: 10.1016/j.ttbdis.2014.04.017
28. Tkachev S, Panov V, Dobler G, Tikunova N. First detection of Kemerovo virus in Ixodes pavlovskyi and Ixode spersulcatus ticks collected in Novosibirsk region, Russia. Ticks and Tick-borne Diseases.2014; 5(5): 494-496. doi: 10.1016/j.ttbdis.2014.03.003
29. Safonova MV, Gmyl AP, Karganova GG, Lukashev AN, Speranskaya AS, Neverov AD, et al. Genetic diversity of Kemerovo virus and phylogenetic relationships within the Great Island virus genetic group. Ticks and Tickborne diseases. 2020; 11(2): 101333. doi: 10.1016/j.ttbdis.2019.101333
30. Zhang XA, Ma YD, Zhang YF, Hu ZY, Zhang JT, Han S, et al. A New Orthonairovirus associated with human febrile illness. N Engl J Med. 2024; 391(9): 821-831. doi: 10.1056/NEJMoa2313722
31. Kartashov MYu, Krivosheina EI, Kurushina VYu, Moshkin AB, Khankhareev SS, Bicheool ChR, Pelevina ON, Popov NV, Bogomozova OL, Ternovoy VA. Prevalence and genetic diversity of the Alongshanvirus (Flaviviridae) circulating in ticks in the south of Eastern Siberia. Problems of virology (Voprosy virusologii). 2024; 69(2): 151–161. (In Russ.). doi: 10.36233/0507-4088-223
32. Doroshchenko EK, Lisak OV, Rar VA, Suntsova OV, Savinova YuS, Kozlova IV. Species and Genetic Diversity of Representatives of the Anaplasmataceae family found in the sympatry zone of the Ixodes, Dermacentor and Haemaphysalis Genera Ticks. Acta Biomedica Scientifica. 2019; 4(2): 127-135. (In Russ.). doi: 10.29413/ABS.2019-4.2.18
33. Hamšíková Z, Kazimírová M, Haruštiaková D, Mahríková L, Slovák M, Berthová L, et al. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit Vectors. 2016; 9(1): 292. doi: 10.1186/s13071-016-1560-z
34. Flaisz B, Sulyok KM, Kováts D, Kontschán J, Csörgő T, Csipak Á, et al. Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary reflect phylogeographic connections with Siberia and the Far East. Ticks Tick Borne Dis. 2017; 8(4): 666-670. doi: 10.1016/j.ttbdis.2017.04.013
Supplementary files
Review
For citations:
Suntsova O.V., Rar V.A., Lisak O.V., Doroshchenko E.K., Arefieva N.A., Kozlova I.V. New data on infection of Haemaphysalis concinna with tick-borne infection agents in humans and animals in the territory of Baikal region. Acta Biomedica Scientifica. 2025;10(3):80-90. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.8