Antibacterial activity of photocatalytic TIO2 spherical particles with 100–200 nm sizes synthesized by the peroxo method
https://doi.org/10.29413/ABS.2025-10.2.21
Abstract
Background. The development of photocatalysts with antibacterial properties seems to be relevant for combating multiresistant microorganisms in medical institutions. Recently, the peroxo method has been used to synthesize semiconducting metal dioxide TiO2 in the form of spherical particles (SPs) with size of 100–200 nm; its antibacterial properties have not been studied.
The aim is evaluation of the survival and morphology of Escherichia coli and Staphylococcus aureus after exposure of the TiO2 SPs, and estimation their toxicity in bioluminescence test.
Methods. TiO2 at 0.5–2 g/L concentrations after 10-120 min UV irradiation were added to E. coli or S. aureus suspension. Survival, microscopic examination (SEM, ASM), and toxicity bioluminescence test were made after 60–90 min contact.
Results. The antibacterial effect of TiO2 SPs was maintained after UV irradiation was stopped. TiO2 at 0.5–2 g/L with UV pre-irradiation (120 min) decreased the viability of both E. coli and S. aureus. According to the bioluminescence test, EC50 for TiO2 SPs was 7.46, 2.61, 1.87 g/L after 10, 60, 120 min UV pre-irradiation, respectively. The electron microscopic observations suggested that TiO2 SPs have adhesion and adherence to E. coli and S. aureus cells after UV pre-irradiation.
Conclusion. Understanding TiO2 SPs interaction with bacteria allows development of new photocatalysts with antibacterial properties.
About the Authors
I. L. MaslennikovaRussian Federation
Irina L. Maslennikova – senior researcher, Laboratory of immunoregulation
Goleva str., 13, Perm 614081
V. S. Mihailovskaya
Russian Federation
Veronika S. Mihailovskaya – engineer, Laboratory of Molecular Biotechnology
Goleva str., 13, Perm 614081
M. V. Kuznetsova
Russian Federation
Marina V. Kuznetsova – leader reseacher, Laboratory of Molecular Biotechnology
Goleva str., 13, Perm 614081
References
1. Hawkey PM. Multidrug-resistant Gram-negative bacteria: a product of globalization. J Hosp Infect. 2015; 89(4): 241-247. doi: 10.1016/j.jhin.2015.01.008
2. Solcova O, Spacilova L, Maleterova Y, Morozova M, Ezechias M, Kresinova Z. Photocatalytic water treatment on TiO2 thin layers. Desalination Water Treat. 2016; 57(25): 11631-11638. doi: 10.1080/19443994.2015.1049964
3. Maryani E, Nurjanah NS, Hadisantoso EP, Wijayanti RB. The effect of TiO2 additives on the antibacterial properties (Escherichia coli and Staphylococcus aureus) of glaze on ceramic tiles. IOP Conf. Ser.: Mater. Sci. Eng. 2020; 980: 012011. doi: 10.1088/1757-899X/980/1/012011
4. Zhukova LV. Evidence for сompression of Escherichia coli K12 сells under the effect of TiO₂ nanoparticles. ACS Appl Mater Interfaces. 2015; 7(49): 27197-27205. doi: 10.1021/acsami.5b08042
5. Verdier T, Coutand M, Bertron A, Roques C. Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: The influence of methodological aspects. Coatings. 2014; 4(3): 670–686. doi: 10.3390/coatings4030670
6. Baranowska-Wójcik E, Szwajgier D, Gustaw K. Effect of TiO2 on selected pathogenic and opportunistic intestinal bacteria. Biol Trace Elem Res. 2022; 200(5): 2468-2474. doi: 10.1007/s12011-021-02843-7
7. Kim B, Kim D, Cho D, Cho S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 2003; 52(1): 277-281. doi: 10.1016/S0045-6535(03)00051-1
8. Kosyan DB, Yausheva EV, Vasilchenko AS, Vasilchenko AV, Miroshnikov SA.Toxicity of SiO2,TiO2 and CeO2 nanoparticles evaluated using the bioluminescence assay. Int. J. GEOMATE. 2017; 13(40): 66-73. doi: 10.21660/2017.40.32064
9. O’Neill S, Robertson JMC, Héquet V, Chazarenc F, Pang X, Ralphs K, et al. Comparison of titanium dioxide and zinc oxide photocatalysts for the inactivation of Escherichia coli in water using slurry and rotating-disk photocatalytic reactors. Ind Eng Chem Res. 2023; 62(45): 1895218959. doi: 10.1021/acs.iecr.3c00508
10. Yemmireddy VK, Hung YC. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety-Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017; 16: 617-631. doi: 10.1111/1541-4337.12267
11. Pigeot-Rémy S, Simonet F, Atlan D, Lazzaroni JC, Guillard C. Bactericidal effi y and mode of action: a comparative study of photochemistry and photocatalysis. Water Res. 2012; 46(10): 3208-3218. doi: 10.1016/j.watres.2012.03.019
12. Kim SW, An YJ. Effect of ZnO and TiO₂ nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol. 2012; 95(1): 243-253. doi: 10.1007/s00253-012-4153-6
13. Sandua X, Rivero PJ, Esparza J, Fernández-Palacio J, Conde A, Rodríguez RJ. Design of photocatalytic functional coatings based on the immobilization of metal oxide p articles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. Coatings. 2022; 12: 862. doi: 10.3390/coatings12060862
14. Gong M, Xiao S, Yu X, Dong C, Ji J, Zhang D, Xing M. Research progress of photocatalytic sterilization over semiconductors. RSC Adv. 2019; 9(34): 19278-19284. doi: 10.1039/c9ra01826c
15. Pleskova SN, Golubeva IS, Verevkin YK. Bactericidal activity of titanium dioxide ultraviolet-induced films. Mater Sci Eng C Mater Biol Appl. 2016; 59: 807-817. doi: 10.1016/j.msec.2015.10.021
16. Kanan S, Moyet MA, Arthur RB, Patterson HH. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews. 2019; 62(1): 1-65. doi: 10.1080/01614940.2019.16133235
17. Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov SV. Review of antimicrobial properties of titanium dioxide nanoparticles. Int J Mol Sci. 2024; 25(19): 10519. doi: 10.3390/ijms251910519
18. Sora Yu, You J, Yang I, Kang P, Rawal ShB, Sung SD, LeeWI.Tailoring of nanoporousTiO2 spheres with 100–200 nm sizes for effi t dye-sensitized solar cells. Journal of Power Sources. 2016; 325: 7-14. doi: 10.1016/j.jpowsour.2016.06.018
19. Morozov R, Krivtsov I, Avdin V, Amghouz Z, Gorshkov A, Pushkova E, et al. Microporous composite SiO2-TiO2 spheres prepared via the peroxo route: Lead(II) removal in aqueous media. J Non Cryst Solids. 2018; 497: 71-81. doi: 10.1016/j.jnoncrysol.2017.11.031
20. Danilov VS, Zarubina AP, Erochnikov GE, Solov’eva LN, Kartashev FV, Zavil’gel’skii GB. Sensory bioluminescence systems based on lux-operons of various-type luminescent bacteria. Vest. Moscow Univ. Biol. 2002; 3: 20-24.
21. Oleskin AV, Sorokina EV, Zarubina AP, Parkhomenko IM. Testing neurotransmitters for toxicity with a luminescent biosensor: implications for microbial endocrinology. Journal of Pharmacy and Nutrition Sciences. 2017; 7(3): 88-94.
22. Scimone A, Redfern J, Patiphatpanya P, Thongtem T, Ratova M, Kelly P, et al. Development of a rapid method for assessing the effi y of antibacterial photocatalytic coatings. Talanta. 2021; 225: 122009. doi: 10.1016/j.talanta.2020.122009
23. Palza H. Antimicrobial polymers with metal nanoparticles. Int J Mol Sci. 2015; 16(1): 2099-2116. doi: 10.3390/ijms16012099
24. Xiong S, George S, Ji Z, Lin S, Yu H, Damoiseaux R, et al. Size of TiO(2) nanoparticles influences their phototoxicity: an in vitro investigation. Arch Toxicol. 2013; 87(1): 99109. doi: 10.1007/s00204-012-0912-5
25. Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomedicine. 2020; 15: 3447-3470. doi: 10.2147/IJN.S249441
26. Ahamed A, Liang L, Lee MY, Bobacka J, Lisak G. Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. J Hazard Mater. 2021; 404(Pt A): 124107. doi: 10.1016/j.jhazmat.2020.124107
27. Adams CP, Walker KA, Obare SO, Docherty KM. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One. 2014; 9(1): e85981. doi: 10.1371/journal.pone.0085981
28. Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A. A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res. 2012; 1: 116-130. doi: 10.1039/C2TX00012A
29. Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp (Warsz). 2012; 60(4): 267-275. doi: 10.1007/s00005-012-0178-x
30. Chubenko EB, Baglov AV, Borisenko VE, Dudchik NV, Drozdova EV, Yemelyanova OA. Estimation of the integral toxicity of photocatalysts based on graphitic carbon nitride in a luminescent test. Kinetics and Catalysis. 2022; 63(2): 166171. doi: 10.31857/S0453881122020010
Review
For citations:
Maslennikova I.L., Mihailovskaya V.S., Kuznetsova M.V. Antibacterial activity of photocatalytic TIO2 spherical particles with 100–200 nm sizes synthesized by the peroxo method. Acta Biomedica Scientifica. 2025;10(2):209-216. https://doi.org/10.29413/ABS.2025-10.2.21