Preview

Acta Biomedica Scientifica

Расширенный поиск

Современное состояние и проблемы изучения биологических эффектов ТГц-излучения

https://doi.org/10.29413/ABS.2025-10.2.4

Аннотация

Введение. Терагерцовое излучение (ТГцИ) занимает диапазон 0.1–10 ТГц и долгое время было малоизученным из-за сложности создания источников и детекторов. Недавние достижения в полупроводниках и нанотехнологиях способствовали развитию ТГц-технологий в связи, медицине и безопасности, но возникают вопросы о возможном воздействии на здоровье и окружающую среду.

Цель. Обобщить текущее состояние исследований в области клеточных эффектов, возникающих при воздействии ТГцИ. Особое внимание уделено применению омиксных технологий, в частности метаболомики, протеомики, транскриптомики для изучения воздействия ТГцИ на живые системы. Обзор также направлен на анализ ключевых паттернов биологических эффектов, вызванных ТГцИ, и оценку перспектив дальнейших исследований и применения ТГцИ в биомедицинских и биотехнологических контекстах, а также особенности организации экспериментов по изучению влияния ТГцИ. Для написания обзора был произведен поиск научных публикаций с использованием источников PubMed, Google Scholar, Scopus, IEEE Xplore за период с 2000 по 2024 годы.

Обсуждение. Исследования ТГцИ показывают нетепловые эффекты на клетки, включая генотоксичность и изменение экспрессии генов, но результаты разнятся. Большинство данных получено in vitro на разных клеточных линиях, где эффекты зависят от параметров излучения. Для эпителиальных клеток и фибробластов цитотоксичность мала до 1 ТГц, но возможны генотоксические эффекты. ТГцИ может снижать метилирование ДНК опухолевых клеток, что перспективно для диагностики. Омиксные технологии помогают изучать молекулярные механизмы воздействия, но требуется стандартизация методов для точного разграничения тепловых и нетепловых эффектов.

Заключение. Обзор подчеркивает актуальность исследований ТГцИ и его влияние на живые системы, но существующие данные ограничены и разрознены. Для понимания механизмов нетеплового воздействия необходимы более детализированные экспериментальные исследования, включая метаболомные подходы для анализа биохимических реакций на ТГц-излучение.

Об авторах

Е. А. Бутикова
Новосибирский Государственный Университет; Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАН
Россия

Бутикова Екатерина Алексеевна – аспирант, младший научный сотрудник лаборатории клеточных технологий Научно-исследовательского института клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАН; лаборант лаборатории ядерной и инновационной медицины Новосибирского Государственного Университета

630090, г. Новосибирск, ул. Пирогова, 2; 
630060, г. Новосибирск, ул. Тимакова, д. 2



И. А. Разумов
Новосибирский Государственный Университет; Институт цитологии и генетики СО РАН
Россия

Разумов Иван Алексеевич – доктор биологических наук., старший научный сотрудник лаборатории ядерной и инновационной медицины Новосибирского Государственного Университета, старший научный сотрудник лаборатории генетики лабораторных животных, ИЦиГ СО РАН

630090, г. Новосибирск, ул. Пирогова, 2;
630090, г. Новосибирск, пр. Академика Лаврентьева, 10



О. B. Повещенко
Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал ИЦиГ СО РАН
Россия

Повещенко Ольга Владимировна – доктор медицинских наук, заведующий лабораторией клеточных технологий 

630060, г. Новосибирск, ул. Тимакова, д. 2



В. В. Каныгин
Новосибирский Государственный Университет
Россия

Каныгин Владимир Владимирович – кандидат медицинских наук, заведующий лабораторией ядерной и инновационной медицины 

630090, г. Новосибирск, ул. Пирогова, 2



Список литературы

1. Ghann W, Uddin J. Terahertz (THz) Spectroscopy: A Cutting‐Edge Technology. Terahertz Spectroscopy – A Cutting Edge Technology. 2017. doi: 10.5772/67031

2. Frohlich H. Long-Range Coherence and Energy Storage in Biological Systems. 1968; 2(5): 641-649. doi: 10.1002/qua.560020505

3. Li H, Zhe Y, Yu D, Zhou J, Yang H. Study on terahertz radiation test of blackbody. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. 2012; 8417: 30. doi: 10.1117/12.973731

4. Walker CK. Terahertz Astronomy. Engineering and Technology, Physical Sciences. 2015; 351. doi: 10.1201/b19111

5. Up to 30 Gbps. New Chip Enables Record-breaking Wireless Data Transmission Speed. URL: www.techcrunch.com [date of access May 9, 2023].

6. Up to 30 Gbps. Scientists show off the future of WiFi — smash through 3Gbps barrier. URL: https://www.techradar.com/news/internet/scientists-show-off-future-of-wi-fi-smash-through-3gbps-barrier-1080568 [date of access: May 19, 2023].

7. Zeitler JA. Pharmaceutical Terahertz Spectroscopy and Imaging. 2016; 171–222. doi: 10.1007/978-1-49394029-5_5

8. Han C, Wu Y, Chen Z, Wang X. Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems. Arxiv. Cornell University. 2019. doi: 10.48550/arXiv.1912.06040

9. Gallerano GP, et al. “THz-BRIDGE: A European project for the study of the interaction of terahertz radiation with biological systems”. Infraredand Millimeter Waves, Conference Digestofthe 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics. 2004; 817-818. doi: 10.1109/ICIMW.2004.1422345

10. Scientific Committee on Emerging Newly Identified Health Risks. Opinion on potential health effects of exposure to electromagnetic fields. Bioelectromagnetics. 2015; 36: 480–4. doi: 10.1002/bem.21930

11. De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Lista F, Regalbuto E, et al. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutat Res Genet Toxicol Environ Mutagen. 2015; 793: 150–60. doi: 10.1016/j.mrgentox.2015.06.003

12. Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, et al. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation. Phys Med Biol. 2013; 58: 373–91. doi: 10.1088/0031-9155/58/2/373

13. Wilmink GJ, Grundt JE. Invited review article: Current state of research on biological effects of terahertz radiation. J Infrared Millim Terahertz Waves. 2011; 32: 10741122. doi: 10.1007/s10762-011-9794-5

14. Wilmink GJ, Rivest BD, Roth CC, Ibey BL, Payne JA, Cundin LX, et al. In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Lasers Surg Med. 2011; 43(2): 152–63. doi: 10.1002/lsm.20960

15. Hintzsche H, Jastrow C, Heinen B, Baaske K, Kleine-Ostmann T, Schwerdtfeger M, et al. Terahertz radiation at 0.380 THz and 2.520 THz does not lead to DNA damage in skin cells in vitro. Radiat Res. 2013; 179: 38–45. doi: 10.1667/RR3077.1

16. Wilmink GJ, Ibey BL, Roth CL, Vincelette RL, Rivest BD, Horn CB, et al. Determination of death thresholds and identification of terahertz (THz)–specific gene expression signatures. Optical Interactions with Tissues and Cells XXI. 2010; 7562: 7562OK. doi: 10.1117/12.844917

17. ClothierRH,BourneN.EffectsofTHzExposureonHuman Primary Keratinocyte Differentiation and Viability. J Biol Phys. 2003; 29(2-3): 179-85. doi: 10.1023/A:1024492725782

18. Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. Terahertz radiation increases genomic instability in human lymphocytes. Radiat Res. 2008; 170(2): 224-34. doi: 10.1667/RR0944.1

19. Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmid E, Schrader T. Terahertz radiation induces spindle disturbances in human-hamster hybrid cells. Radiat Res. 2011; 175(5): 569-74. doi: 10.1667/RR2406.1

20. Kulipanov GN, Bagryanskaya EG, Chesnokov EN, Choporova YY, Gerasimov VV, Getmanov YV, et al. Novosibirsk Free Electron Laser-Facility Description and Recent Experiments. IEEE Trans Terahertz Sci and Technol. 2015; 5(5): 798-809. doi: 10.1109/TTHZ.2015.2453121

21. Demidova EV, Goryachkovskaya TN, Malup TK, Bannikova SV, Semenov AI, Vinokurov NA, et al. Studying the non-thermal effects of terahertz radiation on E. coli/ pKatG-GFP biosensor cells. Bioelectromagnetics. 2013; 34(1): 15-21. doi: 10.1002/bem.21736

22. Serdyukov DS, GoryachkovskayaTN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. Biomed Opt Express. 2021;12(2): 705-721. doi: 10.1364/boe.412074

23. Peltek S, Meshcheryakova I, Kiseleva E, Oshchepkov D, Rozanov A, Serdyukov D, et al. E. coli aggregation and impaired cell division after terahertz irradiation. Sci Rep. 2021; 11(1): 20464. doi: 10.1038/s41598-021-99665

24. BannikovaS,KhlebodarovaT,VasilievaA,Mescheryakova I, Bryanskaya A, Shedko E, et al. Specifi Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci. 2022; 23(23): 15216. doi: 10.3390/ijms232315216

25. Bogomazova AN, Vassina EM, Goryachkovskaya TN, Popik VM, Sokolov AS, Kolchanov NA, et al. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci Rep. 2015; 5: 7749. doi: 10.1038/srep07749

26. Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 2019; 9(17): 9354–63. doi: 10.1039/C8RA10605c

27. Wei L, Yu L, Jiaoqi H, Guorong H, Yang Z, Weiling F. Application of terahertz spectroscopy in biomolecule detection. Frontiers in Laboratory Medicine. 2018; 2(4): 127– 33. doi: 10.1016/j.flm.2019.05.001

28. Cheon H, Yang HJ, Lee SH, Kim YA, Son JH. Terahertz molecular resonance of cancer DNA. Sci Rep. 2016; 6: 37103. doi: 10.1038/srep37103

29. Son J-H, Cheon H. Toward cancer treatment using terahertz radiation: demethylation of cancer cells. Proc. SPIE 11390, Next-Generation Spectroscopic Technologies XIII. 2020; 1139002. doi: 10.1117/12.2557655

30. Cheon H, Paik JH, Choi M, Yang HJ, Son JH. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep. 2019; 9(1): 6413. doi: 10.1038/s41598-019-42855-x

31. Son JH, Oh SJ, Cheon H. Potential clinical applications of terahertz radiation. J Appl Phys. 2019; 125(19): 190901. doi: 10.1063/1.5080205

32. Wang W, Zhang Y. Correlations between Terahertz Spectra and Molecular Structures of 20 Standard α-Amino Acids. Acta Phys.–Chim.Sin. 2009; 25(10): 2074-2079.

33. Danielle M, Katsuhiro A, Jae-Young K, Yuko U. Chemical Mapping of Pharmaceutical Cocrystals Using Terahertz Spectroscopic Imaging. Anal. Chem. 2013; 85(4): 1980-1984. doi: 10.1021/ac302852n

34. Vrazhnov D, Mankova A, Stupak E, Kistenev Y, Shkurinov A, Cherkasova O. Discovering Glioma Tissue through Its Biomarkers’ Detection in Blood by Raman Spectroscopy and Machine Learning. Pharmaceutics. 2023; 15(1): 203. doi: 10.3390/pharmaceutics15010203

35. Lykina AA, Nazarov MM, Konnikova MR, Mustafin IA, Vaks VL, Anfertev VA, et al. Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets. J Biomed Opt. 2021; 26(4): 043006. doi: 10.1117/1.jbo.26.4.043006

36. Cong MYa. Biomedical application of terahertz imaging technology: a narrative review. Quant Imaging Med Surg 2023; 13(12): 8768–86. doi: 10.21037/qims23-526

37. Emaminejad H, Mir A, Farmani A. Design and Simulation of a Novel Tunable Terahertz Biosensor Based on Metamaterials for Simultaneous Monitoring of Blood and Urine Components. Plasmonics. 2021; 16: 1537–48. doi: 10.1007/s11468-021-01399-5

38. Konnikova M, Cherkasova O, Nazarov M, Vrazhnov D, Kistenev Y, Shkurinov A. Terahertz spectroscopy of blood plasma as a promising method for diagnosing of thyroid cancer. International Conference on Infrared, Millimeter, and Terahertz Waves, (IRMMW-THz). 2020; p. 846–7. doi: 10.1109/IRMMW-THz46771.2020.9370915

39. Zhan X, Liu Y, Chen Z, Luo J, Yang S, Yang X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta. 2023; 259: 124483. doi: 10.1016/j.talanta.2023.124483

40. Fitzgerald AJ. Classification of terahertz-pulsed imaging data from excised breast tissue. J Biomed Opt. 2012; 17(1): 016005. doi: 10.1117/1.jbo.17.1.016005

41. Doradla P, Alavi K, Joseph CS, Giles RH. Development of terahertz endoscopic system for cancer detection. SPIE. 2016; 9747: 97470F. doi: 10.1117/12.2209404

42. Zaytsev KI, Chernomyrdin NV, Kudrin KG, Gavdush AA, Nosov PA, Yurchenko SO, et al. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi. J Phys Conf Ser., 2016; 735: 012076. doi: 10.1088/17426596/735/1/012076

43. Kamburoglu K, Yetimôglu NO, Altan H. Characterization of primary and permanent teeth using terahertz spectroscopy. Dentomaxillofacial Radiology. 2014; 43(6): 20130404. doi: 10.1259/dmfr.20130404

44. Reid CB, Fitzgerald A, Reese G, Goldin R, Tekkis P, O’Kelly PS, et al. Terahertz pulsed imaging of freshly excised human colonic tissues. Phys Med Biol. 2011; 56: 4333– 53. doi: 10.1088/0031-9155/56/14/008

45. Bin JiY, Moon I-S, Bark HS, Kim SH, Park DW, Noh SK, et al. Terahertz otoscope and potential for diagnosing otitis media. Biomed Opt Express. 2016; 7(4): 1201-9. doi: 10.1364/boe.7.001201

46. Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, et al. Cellular effects of terahertz waves. J Biomed Opt. 2021; 26(9): 090902. doi: 10.1117/1.jbo.26.9.090902

47. Raicu V, Feldman Yu. Dielectric relaxation in biological systems : physical principles, methods, and applications. Oxford University Press. 2015.

48. Laage D, Elsaesser T, Hynes JT. Water Dynamics in the Hydration Shells of Biomolecules. Chem Rev. 2017; 117(16): 10694–725. doi: 10.1021/acs.chemrev.6b00765

49. Comez L, Paolantoni M, Sassi P, Corezzi S, Morresi A, Fioretto D. Molecular properties of aqueous solutions: A focus on the collective dynamics of hydration water. Soft Matter. 2016; 12(25): 5501–14. doi: 10.1039/c5sm03119b

50. Kindt JT, Schmuttenmaer CA. Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy. J. Phys. Chem. 1996; 100(24): 10373–10379.

51. Smolyanskaya OA, Chernomyrdin NV, Konovko AA, Zaytsev KI, Ozheredov IA, Cherkasova OP, et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog in Quantum Electronics. 2018; 62: 1–77. doi: 10.1016/j.pquantelec.2018.10.001

52. Koyama S, Narita E, Shimizu Y, Shiina T, Taki M, Shinohara N, et al. Twenty four-hour exposure to a 0.12 THz electromagnetic field does not affect the genotoxicity, morphological changes, or expression of heat shock protein in HCE-T cells. Int J Environ Res Public Health. 2016; 13(8): 793. doi: 10.3390/ijerph13080793

53. Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, et al. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed Opt Express. 2021; 12(11): 7122-7138. doi: 10.1364/boe.440460

54. Hintzsche H, Jastrow C, Kleine-Ostmann T, Kärst U, Schrader T, Stopper H. Terahertz Electromagnetic Fields (0.106 THz) do Not Induce Manifest Genomic Damage In Vitro. PLoS One. 2012; 7(9): e46397. doi: 10.1371/journal.pone.0046397

55. Grundt JE, Cerna C, Roth CC, Ibey BL, Lipscomb D, Echchgadda I, et al. Terahertz radiation triggers a signature gene expression profile in human cells. IEEE. 2011. doi: 10.1109/irmmw-THz.2011.6104967

56. Bourne N, Clothier RH, D’Arienzo M, Harrison P. The Effects of Terahertz Radiation on human keratinocyte primary cultures and neural cell cultures. Altern Lab Amin. 2008; 36(6): 667–84. doi: 10.1177/026119290803600610

57. Sitnikov D, Revkova V, Ilina I, Shatalova R, Komarov P, Struleva E, et al. Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. Int J Mol Sci. 2023; 24(7): 6558. doi: 10.3390/ijms24076558

58. Titova LV, Ayesheshim AK, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann FA, et al. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: A new therapeutic avenue? Sci Rep. 2013; 3: 2363. doi: 10.1038/srep02363

59. Yaekashiwa N, Otsuki S, Hayashi S, Kawase K. Investigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable source. J Radiat Res. 2018; 59: 116–21. doi: 10.1093/jrr/rrx075

60. Wilmink GJ, Rivest BD, Ibey BL, Roth CL, Bernhard J, Roach WP. Quantitative investigation of the bioeffects associated with terahertz radiation. Optical Interactions with Tissues and Cells XXI. 2010; 7562. doi: 10.1117/12.844916

61. Subedi P, Moertl S, Azimzadeh O. Omics in Radiation Biology: Surprised but Not Disappointed. Radiation. 2022; 2(1): 124-129. doi: 10.3390/radiation2010009

62. Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne). 2022; 9: 911861. doi: 10.3389/fmed.2022.911861

63. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angewandte Chemie – International Edition 2010; 49(32): 5426-45. doi: 10.1002/anie.200905579

64. Lanekoff I, Sharma VV, Marques C. Single-cell metabolomics: where are we and where are we going? Curr Opin Biotechnol. 2022; 75: 102693. doi: 10.1016/j.copbio.2022.102693

65. Ali A, Davidson S, Fraenkel E, Gilmore I, Hankemeier T, Kirwan JA, et al. Single cell metabolism: current and future trends. Metabolomics. 2022; 18(10): 77. doi: 10.1007/s11306-022-01934-3

66. Costanzo M, Caterino M, Ruoppolo M. Targeted metabolomics. Metabolomics Perspectives, Elsevier. 2022; 219–36. doi: 10.1016/B978-0-323-85062-9.00006-4

67. Ivanisenko VA, Gaisler EV, Basov NV, Rogachev AD, Cheresiz SV, Ivanisenko TV, et al. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci Rep. 2022; 12: 19977. doi: 10.1038/s41598-022-24170-0

68. Pronyaeva KA, Basov NV, Butikova EA, Danilova AN, Kolerova AV, Pospelov BA, et al. Modern methods of diagnosis of sexually transmitted infections: from traditional approaches to point-of-care testing technologies. Klinicheskaya Dermatologiya i Venerologiya. 2023; 22(3): 244-251. doi: 10.17116/klinderma202322031244

69. Basov NV, Rogachev AD, Aleshkova MA, Gaisler EV, Sotnikova YS, Patrushev YV, et al. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta. 2024; 267: 125168. doi: 10.1016/j.talanta.2023.125168

70. Echchgadda I, Cerna CZ, Sloan MA, Elam DP, Ibey BL. Effects of different terahertz frequencies on gene expression in human keratinocytes. SPIE. 2015; 9321: 93210Q. doi: 10.1117/12.2082542

71. Alexandrov BS, Phipps LM, Alexandrov LB, Booshehri LG, Erat A, Zabolotny J, et al. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells. Sci Rep. 2013; 3: 1184. doi: 10.1038/srep01184

72. Serdyukov DS, GoryachkovskayaTN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, et al. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. Biomed Opt Express. 2020; 11(9): 5258-5273. doi: 10.1364/boe.400432

73. Demidova EV, GoryachkovskayaTN, Mescheryakova IA, Malup TK, Semenov AI, Vinokurov NA, et al. Impact of Terahertz Radiation on Stress-Sensitive Genes of E.Coli Cell. IEEE Trans Terahertz Sci Technol. 2016; 6(3): 1-7. doi: 10.1109/TTHZ.2016.2532344

74. Son JH. Terahertz Demethylation of Cancer Cells for Potential Cancer Treatment. IEEE Computer Society. 2022; 2022. doi: 10.1109/IRMMW-THz50927.2022.9896023

75. Cheon H, Yang H-J, Choi M, Son J-H. Effective demethylation of melanoma cells using terahertz radiation. Biomed Opt Express. 2019; 10: 4931. doi: 10.1364/boe.10.004931

76. Zhou H, Peng XY, Gou Y, Pei D, Zhang X, Zhong JL. Morphological Changes of Melanoma Cells Induced by Pulsed Terahertz Radiation. J Infrared Millim Terahertz Waves. 2022; 43: 829–42. doi: 10.1007/s10762-022-00880-4

77. Zhang R, Yang K, Yang B, AbuAli NA, Hayajneh M, Philpott M, et al. Dielectric and Double Debye Parameters of Artificial Normal Skin and Melanoma. J Infrared Millim Terahertz Waves. 2019; 40: 657–72. doi: 10.1007/s10762019-00597-x

78. Butikova EA, Basov NV, Rogachev AD, Gaisler EV, Ivanisenko VA, Demenkov PS, et al. Metabolomic and gene networks approaches reveal the role of mitochondrial membrane proteins in response of human melanoma cells to THz radiation. Biochim Biophys Acta Mol Cell Biol Lipids. 2025, 1870(2): 159595. doi: 10.1016/j.bbalip.2025.159595


Рецензия

Для цитирования:


Бутикова Е.А., Разумов И.А., Повещенко О.B., Каныгин В.В. Современное состояние и проблемы изучения биологических эффектов ТГц-излучения. Acta Biomedica Scientifica. 2025;10(2):33-47. https://doi.org/10.29413/ABS.2025-10.2.4

For citation:


Butikova E.A., Razumov I.A., Poveshchenko O.V., Kanygin V.V. The current state and problems of studying the biological effects of THz irradiation. Acta Biomedica Scientifica. 2025;10(2):33-47. (In Russ.) https://doi.org/10.29413/ABS.2025-10.2.4

Просмотров: 181


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)