Preview

Acta Biomedica Scientifica

Advanced search

Heterodimers of Toll-like receptors (TLR) in the pathogenesis of systemic inflammation (Review article)

https://doi.org/10.29413/ABS.2025-10.2.3

Abstract

In recent decades, fundamental discoveries in biology and medicine have allowed for a new look at the main pathophysiological mechanisms of systemic inflammation formation in many pathological conditions, both infectious and non-infectious etiology. The TLRs family acts as a bridge linking innate and acquired immunity, mediates the initial innate immune responses, and is necessary for the development of an adaptive immune response.

The aim. To draw the attention of specialists to the role of TLR heterodimers in the development of infl           and to show that it can become new targets in drug development.

Materialsandmethods. Writingthereview, domesticandforeignliteratureofthe Google, PubMed and eLibrary systems (1998-2024) was analyzed.

The results and discussion. TLRs recognize a wide range of different related ligands with their extracellular leucine-rich repeating domains (LRRs), triggering signal transmission inside the target cell through sequential activation of cytoplasmic adapter molecules, kinases, and nuclear transcription factor. The literature data on TLRs heterodimers, which include TLR1, TLR2, TLR4, TLR6, and TLR10, are presented. The formation and composition of heterodimers are determined by the structure of the pathogen. Functionally, heterodimers provide an optimal cell response, including the synthesis of effector molecules: proand anti-inflammatory cytokines, chemokines, and inflammatory mediators. Co-receptors, in particular CD14 / CD36, are involved in binding TLR heterodimers to a specific ligand.

Conclusion. An analysis of the literature data had shown the important role of TLR heterodimers and the signaling pathways activated by them in the pathogenesis of many diseases. Understanding these molecular mechanisms could contribute to the development of a more effective treatment strategy. Of particular interest is the creation of new targeted drugs that affect the Toll-receptor system, which is a new direction in the treatment of allergies, autoimmune pathology, and chronic inflammation.

About the Authors

I. R. Prokhorenko
The Hospital of the Pushchinsky Scientific Center of the Russian Academy of Sciences
Russian Federation

Isabella R. Prokhorenko – Dr. Sc. (Bio.)

Institutskaya str., 1, Moscow region, Pushchino, 142290



N. I. Kosyakova
The Hospital of the Pushchinsky Scientific Center of the Russian Academy of Sciences
Russian Federation

Ninel I. Kosyakova – Dr. Sc. (Med)

Institutskaya str., 1, Moscow region, Pushchino, 142290



S. V. Grachev
I.M. Sechenov First Moscow State Medical University
Russian Federation

Sergey V. Grachev – Dr. Sc. (Med), Member of the Russian Academy of Sciences

Trubetskaya str., 8, p. 2, Moscow, GSP-1



References

1. Kobyakova OS, Deev IA, Kulikov E, Starovoytova E, Malykh R, Balaganskaya M, et al. Chronic noncommunicable diseases: combined effects of risk factors. Profilakticheskaya meditsina. 2019; 22(2): 45-50. (In Russ.). doi: 10.17116/profmed20192202145

2. Prevention of chronic noncommunicable diseases in the Russian Federation. National guidelines 2022. Cardiovascular therapy and prevention. 2022; 21(4): 32-35. (In Russ.). doi: 10.15829/17288800-2022-3235

3. Nejatizadeh A, Eftekhar E, Shekari M, Farshidi H, Davoodi S, Shahmoradi M, et al. Cohort profile: Bandar Kong prospective study of chronic non-communicable diseases. PLoS One. 2022; 17(5): e0265388. doi: 10.1371/JOURNAL.PONE.0265388

4. Chereshnev VA, Gusev EY. Immunological and pathophysiological mechanisms of systemic inflammation. Medical immunology. 2012; 14(1-2): 9-20.

5. Amato M-K, Hennessy C, Shah K, Mayer J. Multisystem Inflammatory Syndrome in an Adult. J Emerg Med. 2021; 61(1): e1-e3. doi: 10.1016/j.jemermed.2021.02.007

6. Varela ML, Mogildea M, Moreno I, Lopes A. Acute Inflammation and Metabolism. Inflammation. 2018; 41(4): 1115–1127. doi: 10.1007/S10753-018-0739-1

7. Krejsek J. Defensive and damaging inflammation: basic characteristics. Vnitr Lek. 2019; 65(2):76-80.

8. Chesnokova NP, Morrison VV, Bizenkova MN, Polutova NV. Inflammation as a typical pathological process underlying the development of various nosological forms of pathology. Scientific review. Abstract journal. 2018; 1: 124-128. (In Russ.). URL: https://abstract.science-review.ru/ru/article/view?id=1877

9. Zielen S, Trischler J, Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol. 2015; 11(3): 409-418. doi: 10.1586/1744666X.2015.1012158

10. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388(6640): 394-397. doi: 10.1038/41131

11. Lancaster GI, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT, et al. The physiological regulation of toll-like receptor expression and function in humans. J Physiol. 2005; 563(3): 945–955. doi: 10.1113/jphysiol.2004.081224

12. Lundin A, Bok CM, Aronsson L, Bjorkholm B, Gustafsson JA, Pott S, et al. Gut flora, toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 2008; 10(5): 1093–103. doi: 10.1111/j.1462-5822.2007.01108.x

13. Gay NJ, Gangloff M. Structure and Function of Toll Receptors and Their Ligands. Ann. Review Biochem. 2007; 76(1): 141-145. doi: 10.1146/annurev.biochem.76.060305.151318

14. Li Yu, Wang LT, Chen SW. Endogenous toll-like receptor ligands and their biological significance. J. Cell. Mol. Med. 2010; 14(11): 2592-2603. doi: 10.1111/j.15824934.2010.01127.x

15. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 2009; 388: 621–625. doi: 10.1016/j.bbrc.2009.08.062

16. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol. 2003; 21: 335–376. doi: 10.1146/annurev.immunol.21.120601.141126

17. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA. 2005; 102(27): 9577-9582. doi: 10.1073/pnas.0502272102

18. Veltkamp M, van Moorsel CH, Rijkers GT, Ruven HJ, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens. 2012; 79: 25-32. doi: 10.1002/ijc.23826

19. Akira S. Toll-like receptors and innate immunity. Adv Immunol. 2001: 78: 1-56. Doi: 10.1016/s00652776(01)78001-7

20. Lin S-C, Lo Yu-C, Wu H. Helical assembly in the MyD88IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010; 465(7300): 885-890. doi: 10.1038/nature09121

21. Manavalan B, Basith S, Choi S. Similar Structure but Different Roles – an Updated Perspective on TLR Structures. Front, Physiol. 2011; 2: 1-13. doi: 10.3389/fphys.2011.00041

22. Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in In Infection and Immunity. Front. Immunol. 2012; 18: 79. doi: 10.3389/fimmu.2012.00079

23. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014; 5: 461. doi: 10.3389/fimmu.2014.00461

24. Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014; 14: 546-558. doi: 10.1038/nri3713

25. Flo TH, Halaas O, Torp S, Ryan L, Lien E, Dybdahl B, et al. Differential expression of Toll-like Receptor 2 in human cells. J. Leukoc. Biol. 2001; 69(3): 474-481. doi: 10.1189/jlb.69.3.474

26. Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, et al. TLR6: a novel member of an expanding Toll-like receptor family. Gene. 1999; 231: 59–65. doi: 10.1016/S0378-1119(99)00098-0

27. Long EM, Millen B, Kubes P, Robbins SM. Lipoteichoic Acid Induces Unique Inflammatory Responses When Compared to Other Toll-like Receptor 2 Ligands. PLoS ONE. 2009; 4: e5601. doi: 10.1371/journal.pone.0005601

28. Farhat K, Riekenberg S, Heine H, et al. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J. Leukocyte Biol. 2008; 83(3): 692–701. doi: 10.1189/jlb.0807586

29. Matsushima BN, Takatsuka S, Miyashita H, Kretsinger RH. Leucine rich repeat proteins: 8sequences, mutations, structures and diseases. Protein and Peptide Letters. 2019; 26(2): 108–131. doi: 10.2174/0929866526666181208170027

30. Manukyan M, Triantafi K, Triantafi M, Mackie A, Nilsen N, et al. Binding of Lipopeptide to CD14 Induces Physical Proximity of CD14, TLR2 and TLR1. Eur. J. Immunol. 2005; 35: 911–921. doi: 10.1002/eji.200425336

31. Chávez-Sánchez L, Garza-Reyes MG, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Blanco-Favela F. The Role of TLR2, TLR4 and CD36 in Macrophage Activation and Foam Cell Formation in Response to OxLDL in Humans. Hum. Immunol. 2014; 75: 322–329. doi: 10.1016/j.humimm.2014.01.012

32. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36 is a sensor of diacylglycerides. Nature. 2005; 433: 523–527. doi: 10.1038/nature03253

33. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defi by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 13766–13771. doi: 10.1073/pnas.250476497

34. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34: 637–50. doi: 10.1016/j.immuni.2011.05.006

35. Reuven EM, Fink A, Shai Y. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochim. Biophys. Acta. 2014; 1838: 1586–1593. doi: 10.1016/j.bbamem.2014.01.020

36. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM. Regulation of Toll like receptors in human monocytes and dendritic cells. J. Immunol. 2001; 166: 249– 255. doi: 10.4049/jimmunol.166.1.249

37. Spitzer JH, Visintin A, Mazzoni A, Kennedy MN, Segal DM. Toll-like receptor 1 inhibits Toll-like receptor 4 signaling in endothelial cells. Eur. J. Immunol. 2002; 32: 1182–1187. doi: 10.1002/1521-4141(200204)32:4<1182::AID-IMMU1182>3.0.CO;2-9

38. Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, et al. Toll-like Receptor 2/4 .Heterodimers Mediates Inflammatory Injury In Intracerebral Hemorrage. Ann Neurol. 2014; 75: 876-889. doi: 10.1002/ana.24159

39. Muniz-Bongers LR, McClain CB, Saxena M, Bongers G, Merad M, Bhardwaj N. MMP2 and TLRs Modulate Immune Responses in the Tumor Microenvironment. JCI Insight. 2021; 6: e144913. doi: 10.1172/jci.insight.144913

40. Good DW, George T, Watts BA. Toll-Like Receptor 2 is required for LPS Induced Toll-like Receptor 4 Signaling and Inhibition of Ion Transport in Renal Thick Ascending Limb. J Biol Chem. 2012; 287(24): 20208–20. doi: 10.1074/jbc.M111.33625536

41. Francisco S, Billod J-M, Merino J, Punzón C, Gallego A, Arranz A, et al. Induction of TLR4/TLR2 Interaction and Heterodimer Formation by Low Endotoxic Atypical LPS. Front. Immunol. 2021; 12: 748303. doi: 10.3389/fimmu.2021.748303

42. Chuang TH, Ulevitch RJ. Identification of hTLR10: a novel human Toll‐like receptor preferentially expressed in immune cells. Biochim Biophys Acta. 2001; 1518(1‐2): 157‐161. doi: 10.1016/S0167-4781(00)00289-X

43. Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One. 2012; 7: e48875. doi: 10.1371/journal.pone.0048875

44. Regan Т, Ken Nall К, Ruaidhri Carmody R, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages. J Immunol. 2013; 191: 60846092. doi: 10.4049/jimmunol.1203245

45. Oosting M, Cheng S-C, Bolscher MJ, et al. Human TLR10 is an anti‐inflammatory pattern‐recognition receptor. Proc Natl Acad Sci USA. 2014; 111(42): E4478‐E4484. doi: 10.1073/pnas.1410293111

46. Nagashima H, Iwatani S, Cruz M, et al. Toll-like Receptor 10 in Helicobacter pylori Infection. J. Infect. Diseases. 2015; 212: 1666–76. doi: 10.1093/infdis/jiv270

47. Landreth GE, Reed-Geaghan EG. Toll-like receptors in Alzheimer’s disease. Curr. Top. Microbiol. Immunol. 2009; 336: 137–153. doi: 10.1007/978-3-642-00549-7_8

48. Kim C, Ho D-H, Suk J-E, et al. Neuron-Released Oligomeric α-Synuclein Is an Endogenous Agonist of TLR2 for Paracrine Activation of Microglia. Nat. Commun. 2013; 4: 1562. doi: 10.1038/ncomms2534

49. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng JSh, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 2010; 11: 155–161. doi: doi.org/10.1038/ni.1836

50. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology. 2010; 11: 373–384. doi: 10.1038/ni.1863

51. Shmuel-Galia L, Klug Y, Porat Z, Charni M, Zarmi B, Shai Y. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microgliamediate. Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J. Biol. Chem. 2017; 292(32): 13415– 13427. doi: 10.1074/jbc.M117.784983

52. Simpson A, Martinez FD. The role of lipopolysaccharide in the development of atopy in humans. Clin. Exp. Allergy. 2010; 40(2): 209-23. doi: 10.1111/j.13652222.2009.03391.x

53. Zhao JL, Shang HH, Cao XP, Huang YaL, Fang XYu, Zhang ShD, et al. Association of polymorphisms in TLR2 and TLR4 with asthma risk: an update meta-analysis. Medicine (Baltimore). 2017; 96(35): 7909. doi: 10.1097/MD.0000000000007909

54. Li ShJ, Xie XM, Song Ya, Jiang HX, Wu XJ, Su XF, et al. Association of TLR4 (896A/G and 1196C/T) gene polymorphisms with asthma risk: a metaanalysis. Med. Sci. Monit. 2015; 21: 3591-9. doi: 10.12659/msm.895380

55. Tizaoui K, Kaabachi W, Hamzaoui K, Hamzaoui A. Association of single nucleotide polymorphisms in tolllike receptor genes with asthma risk: a systematic review and meta-analysis. Allergy Asthma Immunol. Res. 2015; 7(2): 130-40. doi: 10.4168/aair.2015.7.2.130

56. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001; 2: 675-80. doi: 10.1038/90609

57. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388: 394-7. doi: 10.1038/41131

58. Cohn L, Tepper JS, Bottomly K. IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol. 1998; 161: 3813-6.


Review

For citations:


Prokhorenko I.R., Kosyakova N.I., Grachev S.V. Heterodimers of Toll-like receptors (TLR) in the pathogenesis of systemic inflammation (Review article). Acta Biomedica Scientifica. 2025;10(2):24-32. (In Russ.) https://doi.org/10.29413/ABS.2025-10.2.3

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)