Preview

Acta Biomedica Scientifica

Advanced search

Heart failure and mitochondrial dysfunction: research methods in experiment and clinical practice

https://doi.org/10.29413/ABS.2025-10.1.11

Abstract

Heart failure is the leading cause of death, frequent hospitalizations, and poor quality of life. The fundamental mechanisms involved in the occurrence and progression of heart failure are currently not precisely defined. Mitochondria play a key role in the processes of cellular metabolism, performing many biological functions. The  functional activity of mitochondria is inextricably linked to their  structure. In  cardiovascular diseases, in conditions of repeated hypoxia/reoxygenation of tissues, as  well  as under the influence of subclinical inflammation processes, pathological restructuring of the cardiomyocyte mitochondriome occurs. Studies conducted to  date suggest that mitochondria may be the key to understanding the onset and progression of chronic heart failure (CHF). An analysis of the literature demonstrates that the study of mitochondria in patients with CHF is an urgent topic, and the number of publications in the PubMed/MEDLINE system concerning research in this area is progressively increasing, 100 publications on this topic have been found in the eLibrary system. In this review, we reviewed modern methods for evaluating the  structure and  function of mitochondria in experimental and  clinical studies and analyzed the possibility of using these research methods in patients with cardiovascular diseases. It is shown that, despite a fairly wide range of possibilities for studying the structural and functional state of mitochondria of cardiomyocytes in CHF, the estimated indirect signs of mitochondrial dysfunction are surrogate markers, the degree of informativity of which must be studied in comparison with the actual state of the cardiomyocytes mitochondrial ultrastructure, the clinical picture of  the  disease and the prognosis of patients. The necessity of conducting clinical studies aimed at studying the association of direct ultrastructural characteristics of  cardiomyocytes mitochondria with indirect signs of mitochondrial dysfunction with the clinical course and outcomes of CHF is actualized, which will allow us to obtain fundamentally new fundamental knowledge about the mechanisms of development and progression of the pathophysiological phenomenon of CHF, to assess the  degree of informativeness of markers of mitochondrial dysfunction in patients with CHF, which will serve as the basis for the widespread introduction of these diagnostic methods into real clinical practice.

About the Authors

A. A. Garganeeva
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Alla A. Garganeeva – Dr. Sc. (Med.), Professor, Head of the Department of Myocardial Pathology, 

Kievskaya str. 111A, Tomsk 634012



O. V. Tukish
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Olga V. Tukish – Cand. Sc. (Med.), Research Officer at the Department of Myocardial Pathology,

Kievskaya str. 111A, Tomsk 634012



E. A. Kuzheleva
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Elena A. Kuzheleva – Cand. Sc. (Med.), Research Officer at the Department of Myocardial Pathology,

Kievskaya str. 111A, Tomsk 634012



E. F. Muslimova
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Elvira F. Muslimova – Cand. Sc. (Med.), Research Officer at the Laboratory of Molecular Cell Pathology and Genodiagnostics, 

Kievskaya str. 111A, Tomsk 634012



M. O. Gulya
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Marina O. Gulya – Cand. Sc. (Med.), Radiologist at the Laboratory of Radionuclide Research Methods, 

Kievskaya str. 111A, Tomsk 634012



V. A. Zhargasova
Medlight LLC
Russian Federation

Vera A. Fediunina – Cardiologist, 

Khabarovskaya str. 15, Yuzhno-Sakhalinsk 693010



S. V. Popov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Sergey V. Popov – Dr.  Sc. (Med.), Member of  the  RAS, Director,

Kievskaya str. 111A, Tomsk 634012



References

1. McDonagh T, Metra M. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Russian Journal of Cardiology. 2023; 28(1): 5168. (In Russ.). doi: 10.15829/1560-4071-2023-5168

2. Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid Redox Signal. 2022; 36(13-15): 844-863. doi: 10.1089/ars.2021.0145

3. Tsyplenkova VG. Histological and ultrastructural characteristics of myocardium in heart failure. Kardiologiia. 2013; 9: 58-62. (In Russ.).

4. Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 2004; 78(3): 1109-1118. doi: 10.1016/j.athoracsur.2003.06.034

5. Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 2021; 144(5): 1422-1434. doi: 10.1093/brain/awab041

6. Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 2021; 10(1): 62. doi: 10.1038/s41377-021-00506-9

7. Sudakov NP, Klimenkov IV, Katyshev AI, Nikiforov SB, Goldberg OA, Pushkaryov BG, et al. Mitochondrial dysfunction at atherosclerosis and myocardial infarction: Molecular and cytochemical cell-markers. Acta biomedica scientifica. 2016; 1(3-2): 131-134. (In Russ.). doi: 10.12737/article_590823a517c941.46556762

8. Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, et al. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 2021; 108(7): 1301-1317. doi: 10.1016/j.ajhg.2021.05.003

9. Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 2021; 16(11): e0259591. doi: 10.1371/journal.pone.0259591

10. Pelletier-Galarneau M, Detmer FJ, Petibon Y, Normandin M, Ma C, Alpert NM, et al. Quantification of myocardial mitochondrial membrane potential using PET. Curr Cardiol Rep. 2021; 23(6): 70. doi: 10.1007/s11886-021-01500-8

11. Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021; 128(5): 649-660. doi: 10.1016/j.ophtha.2020.12.012

12. Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y, Fukumoto M, Saito Y, et al. The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 2016; 96(3): 556-565. doi: 10.1016/j.ijrobp.2016.07.002

13. Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011; 11(5): 700-706. doi: 10.1016/j.mito.2011.06.001

14. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018; 69: 62-72. doi: 10.1016/j.ceca.2017.05.003

15. Glancy B, Willis WT, Chess DJ, Balaban RS. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. doi: 10.1021/bi3015983

16. Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980; 190(1): 107-117. doi: 10.1042/bj1900107

17. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020; 126(2): 280-293. doi: 10.1161/CIRCRESAHA.119.316306

18. Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion. 2020; 51: 126-139. doi: 10.1016/j.mito.2020.01.005

19. Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014; 5: 257. doi: 10.3389/fphys.2014.00257

20. D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev. 2020; 2020: 5732956. doi: 10.1155/2020/5732956

21. Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021; 10(1): 19-36. doi: 10.1080/22221751.2020.1861913

22. Chinopoulos C. Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 2018; 117: 49-54. doi: 10.1016/j.neuint.2017.06.010

23. Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 2019; 40(1): 50-70. doi: 10.1016/j.tips.2018.11.004

24. Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017; 3(12): 857-870. doi: 10.1016/j.trecan.2017.10.006

25. Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. JAm Soc Nephrol. 2019; 30(12): 2355-2368. doi: 10.1681/ASN.2019020114

26. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020; 21(5): 268-283. doi: 10.1038/s41580-020-0227-y

27. Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018; 39(1): 6-18. doi: 10.1016/j.it.2017.08.006

28. Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 2018; 33(6): 1052- 1065. doi: 10.1002/jbmr.3390

29. Dorr BM, Fuerst DE. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 2018; 43: 127-133. doi: 10.1016/j.cbpa.2018.01.008

30. Ishida A, Yamada Y, Kamidate T. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 2008; 392(5): 987-994. doi: 10.1007/s00216-008-2334-z

31. Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 2021; 4(1): 64. doi: 10.1038/s42003-020-01574-0

32. Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 2018; 25(2): 206-214.e11. doi: 10.1016/j.chembiol.2017.10.010

33. Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, et al. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 2022; 29(1): 98-108.e4. doi: 10.1016/j.chembiol.2021.06.002

34. Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi: 10.1002/jcsm.12654

35. Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022; 23(2): 141-161. doi: 10.1038/s41580-021-00415-0

36. Ferrari D, Stepczynska A, Los M, Wesselborg S, SchulzeOsthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer druginduced apoptosis. J Exp Med. 1998; 188(5): 979-984. doi: 10.1084/jem.188.5.979

37. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016; 2016: 1245049. doi: 10.1155/2016/1245049

38. Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun. 2014; 5: 3550. doi: 10.1038/ncomms4550

39. Wang M, Ren X, Wang L, Lu X, Han L, Zhang X, et al. A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in Gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 2020; 21(12): 1529-1544. doi: 10.1111/mpp.12993

40. Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. JMol Biol. 2018; 430(24): 4849-4873. doi: 10.1016/j.jmb.2018.09.016

41. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019; 565(7740): 495-499. doi: 10.1038/s41586-018-0846-z

42. Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: Multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 2020; 55(4): 309-321. doi: 10.1080/10409238.2020.1784084

43. Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016; 18(7): 803-813. doi: 10.1038/ncb3376

44. Baumann K. mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 2019; 20(11): 663. doi: 10.1038/s41580-019-0182-7

45. Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, et al. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 2020; 472(3): 367-374. doi: 10.1007/s00424-020-02355-8

46. Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by seahorse XF96 cell mito stress test. STAR Protoc. 2020; 2(1): 100245. doi: 10.1016/j.xpro.2020.100245

47. Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 2020; 13: 100251. doi: 10.1016/j.ynstr.2020.100251

48. Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/ mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. JImmunother Cancer. 2021; 9(9): e002954. doi: 10.1136/jitc-2021-002954

49. Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020; 11(1): 241-258. doi: 10.1002/jcsm.12530

50. Panov AV, Dikalov SI, Darenskaya MA, Rychkova LV, Kolesnikova LI, Kolesnikov SI. Mitochondria: Aging, metabolic syndrome and cardiovascular diseases. formation of a new paradigm. Acta biomedica scientifica. 2020; 5(4): 33-44. (In Russ.). doi: 10.29413/ABS.2020-5.4.5

51. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: Role in heart, skeletal muscle and adi pose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3): 349-369. doi: 10.1002/jcsm.12178

52. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013; 47(1): 9-23. doi: 10.1007/s12035-012-8344-z

53. Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017; 92(3): 1459-1474. doi: 10.1111/brv.12291

54. Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, et al. In situ monitoring of mitochondria regulating cell viability by the RNAspecific fluorescent photosensitizer. Anal Chem. 2020; 92(15): 10815-10821. doi: 10.1021/acs.analchem.0c02298

55. Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018; 19: 158-165. doi: 10.1016/j.redox.2018.08.016

56. Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018; 29(6): 518-540. doi: 10.1089/ars.2017.7491

57. Ortega-Villasante C, Burén S, Blázquez-Castro A, BarónSola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 2018; 122: 202-220. doi: 10.1016/j.freeradbiomed.2018.04.005

58. Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 2020; 154: 84-94. doi: 10.1016/j.freeradbiomed.2020.04.020

59. Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, et al. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A. 2020; 117(25): 14306-14313. doi: 10.1073/pnas.1916851117

60. Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, et al. Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 2020; 63: 101168. doi: 10.1016/j.arr.2020.101168

61. Korepanov VA, Rebrova TY, Atabekov TA, Afanasiev SA. Potential role of mitochondrial dysfunction in arrhythmogenesis in coronary artery disease. Siberian Journal of Clinical and Experimental Medicine. 2023; 38(4): 236-242. (In Russ.). doi: 10.29001/2073-8552-2023-38-4-236-242

62. Kuzheleva EA, Garganeeva AA, Tukish OV, Nesova AK, Golubenko MV, Andreev SL, et al. The role of rs2238296 of the mitochondrial DNA polymerase gamma gene in combination with polymorphic variants of antioxidant defense genes in the development of postinfarction left ventricular aneurysm. Russian Journal of Genetics. 2023; 59: 97-103. doi: 10.1134/s1022795423010076

63. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005; 309(5733): 481-484. doi: 10.1126/science.1112125

64. Ponasenko AV, Tsepokina AV, Tkhorenko BA, Golubenko MV, Gubieva EK, Trephilova LP. Variability of mitochondrial DNA in the development of atherosclerosis and myocardial infarction (a review). Complex Issues of Cardiovascular Diseases. 2018; 7(4S): 75-85. (In Russ.). doi: 10.17802/2306-1278-2018-7-4S-75-85

65. Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, et al. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 2022; 135(1): 93-101. doi: 10.1016/j.ymgme.2021.12.006

66. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 17(1): 1-382. doi: 10.1080/15548627.2020.1797280

67. Li H, Slone J, Fei L, Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019; 8(6): 608. doi: 10.3390/cells8060608

68. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363-375. doi: 10.1038/nri.2017.21

69. Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, et al. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. JNucl Med. 1992; 33(8): 1516-1522.

70. Backus M, Piwnica-Worms D, Hockett D, Kronauge J, Lieberman M, Ingram P, et al. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am J Physiol. 1993; 265(1 Pt 1): C178-С187. doi: 10.1152/ajpcell.1993.265

71. Kawamoto A, Kato T, Shioi T, Okuda J, Kawashima T, Tamaki Y, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015; 10(1): e0117091. doi: 10.1371/journal.pone.0117091

72. Crane P, Laliberté R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20(1): 20-25. doi: 10.1007/BF02261241

73. Hayashi D, Ohshima S, Isobe S, Cheng XW, Unno K, Funahashi H, et al. Increased (99m)Tc-sestamibi washout reflects impaired myocardial contractile and relaxation reserve during dobutamine stress due to mitochondrial dysfunction in dilated cardiomyopathy patients. J Am Coll Cardiol. 2013; 61(19): 2007-2017. doi: 10.1016/j.jacc.2013.01.074

74. Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, et al. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med Imaging. 2021; 21(1): 164. doi: 10.1186/s12880-021-00695-0

75. Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, et al. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed. 2020; 34(5): e4246. doi: 10.1002/nbm.4246

76. Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: What is the role of surgical revascularization? JCard Surg. 2015; 30(2): 224-231. doi: 10.1111/jocs.12477

77. Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 2020; 24(5): 2717-2729. doi: 10.1111/jcmm.14953

78. Unno K, Isobe S, Izawa H, Cheng XW, Kobayashi M, Hirashiki A, et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur HeartJ. 2009; 30(15): 1853-1862. doi: 10.1093/eurheartj/ehp184

79. Afanas’ev SА, Muslimova EF, Rebrova ТY, Tsapko LP, Kercheva МА, Golubenko МV. Peculiarities of the functional state of mitochondria of peripheral blood leukocytes in patients with acute myocardial infarction. Bulletin of Experimental Biology and Medicine. 2020; 169(4): 435-437. (In Russ.). doi: 10.1007/s10517-020-04903-9

80. Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus magnetic resonance spectroscopy (31P MRS) and cardiovascular disease: The importance of energy. Medicina (Kaunas). 2023; 59(1): 174. doi: 10.3390/medicina59010174


Review

For citations:


Garganeeva A.A., Tukish O.V., Kuzheleva E.A., Muslimova E.F., Gulya M.O., Zhargasova V.A., Popov S.V. Heart failure and mitochondrial dysfunction: research methods in experiment and clinical practice. Acta Biomedica Scientifica. 2025;10(1):103-114. (In Russ.) https://doi.org/10.29413/ABS.2025-10.1.11

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)