Preview

Acta Biomedica Scientifica

Advanced search

The study of potential recombination events in the protein-coding regions of CRISPR-Cas loci in the genomes of different Salmonella enterica serovariants using in silico methods

https://doi.org/10.29413/ABS.2025-10.1.6

Abstract

Background. The  study of  recombination processes in  the  CRISPR-Cas loci of Salmonella enterica can help investigate the fundamental evolutionary mechanisms of  the  CRISPR-Cas system to  better understand the  acquisition of  phage resistance.

The aim of the study. To investigate the recombination processes in the proteincoding regions of CRISPR-Cas loci in the genomes of Salmonella enterica serovars Enteritidis, Infantis, and Typhimurium using in silico methods.

Materials and  methods. The  genomic sequences of  the  Salmonella serovars Enteritidis, Infantis, and  Typhimurium were  downloaded from the  NCBI  GenBank database. The  coding sequences of  cas genes were  extracted from the  genomes and  aligned according to  codon position. Recombination events were  identified in the resulting alignment using multiple algorithms. Verification of recombination events was performed.

Results. A  total of  7683  potential recombination events were  identified. Among these, 810 (10.54 %) were verified, and 45 (0.59 %) were recognized as results of convergent evolution. Recombination events are  detected more frequently between strains belonging to different serovariants than between those of the same serovariant. All serovariants can recombine with each other; however, recombination primarily occurs between Enteritidis and Infantis strains, as well as between Typhimurium and  Infantis strains. Infantis and  Typhimurium serovariants also exhibit recombination within themselves. No recombination events were found between strains of the Enteritidis serovariant. The events of convergent adaptive evolution were mainly found in the effector module genes: cas5, cas6, cas7.

Conclusion. It  has  been shown that  homologous recombination often occurs in the S. enterica genome in the region of the cas genes. Bioinformatic algorithms detect more recombination events between evolutionarily more distant strains, which are inconsistent with known in vitro studies.

About the Authors

N. A. Arefieva
Scientific Centre for Family Health and Human Reproduction Problems; Irkutsk State Medical University; Irkutsk State University
Russian Federation

Nadezhda A. Arefieva – Junior Research Officer at the Laboratory of Molecular Epidemiology and Genetic Diagnostics, Timiryazeva str. 16, Irkutsk 664003;

Research Assistant at the Laboratory of Molecular Virology and Biotechnology, Research Institute of Biomedical Sciences, Krasnogo Vosstaniya str. 1, Irkutsk 664003;

Postgraduate, Karla Marksa str. 1, Irkutsk 664004



Yu. S. Bukin
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yurij S. Bukin – Senior Research Officer, Limnological Institute, 

Ulan-Batorskaya str. 3, Irkutsk 664033



S. V. Erdyneev
Irkutsk State Medical University
Russian Federation

Sergey V. Erdyneev – Postgraduate at the Department of Microbiology, Virology and  Immunology,

Krasnogo Vosstaniya str. 1, Irkutsk 664003



Yu. P. Dzhioev
Irkutsk State Medical University
Russian Federation

Yuri P. Dzhioev – Cand. Sc. (Biol.), Leading Research Officer, Head of the Laboratory of Molecular Virology and Biotechnology, Research Institute of Biomedical Sciences, 

Krasnogo Vosstaniya str. 1, Irkutsk 664003



L. A. Miroshnichenko
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Lyubov A. Miroshnichenko – Cand. Sc. (Tech.), Senior Research Officer at the Laboratory of Data Analysis, 

Akademika Koptyuga Ave. 4, Novosibirsk 630090



References

1. Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. 2019; 12(4): 504-521. doi: 10.14202/vetworld.2019.504-521

2. Semina AN. Selecting genes for Salmonella enteritidis identification. International Research Journal. 2018; 10-1(76): 108-110. (In Russ.). doi: 10.23670/IRJ.2018.76.10.023

3. Galán JE. Salmonella Typhimurium and inflammation: A pathogen-centric affair. Nat Rev Microbiol. 2021; 19(11): 716-725. doi: 10.1038/s41579-021-00561-4

4. Rozhnova SS, Kuleshov KV, Pavlova AS, Guseva AN, Kozhakhmetova TA, Akulova NK, et al. Heterogeneity of Salmonella isolates obtained from various sources in Russia 2010–2019. Epidemiology and Infectious Diseases. 2020; 25(1): 26-34. (In Russ.). doi: 10.17816/EID35184

5. Pourcel C, Touchon M, Villeriot N, Vernadet JP, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2020; 48(D1): D535-D544. doi: 10.1093/nar/gkz915

6. Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015; 1311: 47-75. doi: 10.1007/978-1-4939-2687-9_4

7. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol. 2020; 18(2): 67-83. doi: 10.1038/s41579-019-0299-x

8. Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current methods for recombination detection in bacteria. IntJ Mol Sci. 2022; 23(11): 6257. doi: 10.3390/ijms23116257

9. Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in bacterial genomes: Evolutionary trends. Toxins (Basel). 2023; 15(9): 568. doi: 10.3390/toxins15090568

10. Abascal F, Zardoya R, Telford MJ. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010; 38(Web Server Issue): W7-13. doi: 10.1093/nar/gkq291

11. Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S, Schwab T, et al. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2020; 7(1): veaa087. doi: 10.1093/ve/veaa087

12. Martin DP. RDP5 instruction manual. URL: http://web.cbio.uct.ac.za/~darren/RDP5Manual.pdf [date of access: 30.10.2024].

13. Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994; 11(5): 725-736. doi: 10.1093/oxfordjournals.molbev.a040153

14. Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, et al. Recombination and population structure in Salmonella enterica. PLoS Genet. 2011; 7(7): e1002191. doi: 10.1371/journal.pgen.1002191

15. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007; 315(5811): 476-480. doi: 10.1126/science.1127573

16. Tay M, Liu S, Yuan YA. Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site. Protein Sci. 2015; 24(2): 236-245. doi: 10.1002/pro.2609


Review

For citations:


Arefieva N.A., Bukin Yu.S., Erdyneev S.V., Dzhioev Yu.P., Miroshnichenko L.A. The study of potential recombination events in the protein-coding regions of CRISPR-Cas loci in the genomes of different Salmonella enterica serovariants using in silico methods. Acta Biomedica Scientifica. 2025;10(1):59-68. (In Russ.) https://doi.org/10.29413/ABS.2025-10.1.6

Views: 235


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)