Preview

Acta Biomedica Scientifica

Advanced search

Mesenchymal stem cells or extracellular vesicles in the choice of rheumatoid arthritis treatment

https://doi.org/10.29413/ABS.2025-10.1.3

Abstract

Background. Rheumatoid arthritis (RA) is a long-term autoimmune disease characterized by  a  systemic immuno-inflammatory reaction leading to  joint edema, synovial hyperplasia, damage to cartilage and bone tissue. There is currently no effective treatment for this disease.

The aim of the literature review. To analyze the mechanisms described to date that underlie the effects of mesenchymal stem cells (MSC) and extracellular vesicles (EV) on the pathogenetic links of rheumatoid arthritis.

Materials and methods. PubMed and eLibrary databases for the period 2011–2023 were analyzed using keywords: rheumatoid arthritis, hematopoietic stem cells, mesenchymal stem cells, rheumatoid factor, extracellular vesicles, cell therapy.

Results and discussion. The  review describes current aspects of  the  etiology and pathogenesis of  rheumatoid arthritis, its potential biomarkers and currently known therapeutic strategies. The effect of MSC on T and B lymphocytes, as well as  other cellular participants in  the  disease, has been studied in  experimental and clinical studies. The  review expands the  understanding of  the  mechanisms of therapeutic effects of postnatal progenitor cells and their extracellular vesicles in  the  treatment of  rheumatoid arthritis, which, in  terms of  comparison, reveals the advantages and disadvantages of each method. It can be concluded that MSC and EV are a promising direction in the treatment of rheumatoid arthritis, however, further studies of the interactions of molecules affecting the links of the pathogenesis of RA are needed. Additional studies based on a pathogenetically ranked approach to the treatment of the disease are also necessary, which allows to identify the patterns of  effects of  each method with subsequent recommendation in  choosing the use of progenitor cells or, mainly, their secretome in personalized RA therapy, and a more detailed study of the dosage, time and method of their administration is also necessary.

About the Authors

E. A. Takoeva
Institute of Biomedical Research – Branch of the Vladikavkaz Scientific Center, Russian Academy of Sciences; North Ossetian State Medical Academy
Russian Federation

lena A. Takoeva – Cand. Sc. (Med.), Research Officer at the Laboratory of Cell Technologies,

Senior Lecturer at the Department of Pathological Physiology, Pushkinskaya str. 40, Vladikavkaz 362019



R. I. Kokaev
Institute of Biomedical Research – Branch of the Vladikavkaz Scientific Center, Russian Academy of Sciences; North Ossetian State Medical Academy
Russian Federation

Romesh I. Kokaev – Cand. Sc. (Med.), Head of the Laboratory of Cell Technologies, Vilyamsa str. 1, Mikhailovskoye village 363110, Prigorodnyi district, North Ossetia–Alania;

Associate Professor at the Department of Normal Physiology, Pushkinskaya str. 40, Vladikavkaz 362019



A. A. Islaev
Institute of Biomedical Research – Branch of the Vladikavkaz Scientific Center, Russian Academy of Sciences; North Ossetian State Medical Academy
Russian Federation

Altynbek A. Islaev – Junior Research Officer at the Laboratory of Cell Technologies, Vilyamsa str. 1, Mikhailovskoye village 363110, Prigorodnyi district, North Ossetia–Alania;

Teaching Assistant at the Department of Normal Physiology, Pushkinskaya str. 40, Vladikavkaz 362019



References

1. Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020; 9(4): 880. doi: 10.3390/cells9040880

2. Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022; 23(2): 905. doi: 10.3390/ijms23020905

3. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers.2018; 4: 18001. doi: 10.1038/nrdp.2018.1

4. Venetsanopoulou AI, Alamanos Y, Voulgari PV, Drosos AA. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev Clin Immunol. 2022; 18(9): 923-931. doi: 10.1080/1744666X.2022.2106970

5. Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021; 44: 172-182. doi: 10.1016/j.bj.2020.06.010

6. Damerau A, Gaber T. Modeling rheumatoid arthritis in vitro: From experimental feasibility to physiological proximity. Int J Mol Sci. 2020; 21: 7916. doi: 10.3390/ijms21217916

7. Nasonov EL. Russian clinical guidelines. Rheumatology. Moscow: GEOTAR-Media; 2020. (In Russ.).

8. Klippel JH, Stone JH, Crofford LJ, White PH (eds). Rheumatic diseases: practical guide; 3 volumes. Moscow: GEOTAR-Media; 2014; 2. (In Russ.).

9. Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020; 16: 301-315. doi: 10.1038/s41584-020-0409-1

10. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018; 320(13): 1360-1372. doi: 10.1001/jama.2018.13103

11. Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation lessons from rheumatoid arthritis. Front Immunol. 2019; 10: 353. doi: 10.3389/fimmu.2019.00353

12. Kwon EJ, Ju JH. Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation. Int J Mol Sci. 2021; 22: 10576. doi: 10.3390/ijms221910576

13. Komatsu N, Win S, Yan M, Huynh NC, Sawa S, Tsukasaki M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Investig. 2021; 131: e143060. doi: 10.1172/JCI143060

14. Coutant F. Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for glycosylation. Joint Bone Spine. 2019; 86(5): 562-567. doi: 10.1016/j.jbspin.2019.01.005

15. Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokinemediated bone destruction in rheumatoid arthritis. JImmunol Res. 2014; 2014: 263625. doi: 10.1155/2014/263625

16. Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019; 14(5): 364. doi: 10.3389/fmed.2018.00364

17. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015; 18(4): 433-448. doi: 10.1007/s10456-015-9477-2

18. Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells. 2021; 10(11): 3017. doi: 10.3390/cells10113017

19. Singh JA. Treatment guidelines in rheumatoid arthritis. Rheum Dis Clin North Am. 2022; 48(3): 679-689. doi: 10.1016/j.rdc.2022.03.005

20. Debreova M, Culenova M, Smolinska V, Nicodemou A, Csobonyeiova M, Danisovic L. Rheumatoid arthritis: From synovium biology to cell-based therapy. 2022; 24: 365-375. doi: 10.1016/j.jcyt.2021.10.003

21. Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Ther. 2022; 13(1): 101. doi: 10.1186/s13287-022-02782-7

22. Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. World J Stem Cells. 2020; 12(7): 688-705. doi: 10.4252/wjsc.v12.i7.688

23. Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol. 2021; 12: 626193. doi: 10.3389/fimmu.2021.626193

24. Sarsenova M, Issabekova A, Abisheva S, RutskayaMoroshan K, Ogay V, Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci. 2021; 22(21): 11592. doi: 10.3390/ijms222111592

25. Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi: 10.3389/fimmu.2020.01912

26. Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrere-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019; 10: 232. doi: 10.1186/s13287-019-1307-9

27. Vasilev G, Ivanova M, Ivanova-Todorova E, TumangelovaYuzeir K, Krasimirova E, Stoilov R, et al. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int. 2019; 39: 819-826. doi: 10.1007/s00296-019-04296-7

28. Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev. 2019; 288: 85-96. doi: 10.1111/imr.12740

29. Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells. 2018; 7: 161. doi: 10.3390/cells7100161

30. Gowhari Shabgah A, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Ghoryani M, Mohammadi M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene. 2020; 732: 144336. doi: 10.1016/j.gene.2020.144336

31. Gaugler B, Laheurte C, Bertolini E, Pugin A, Wendling D, Saas P, et al. Peripheral blood B cell subsets and BAFF/APRIL levels and their receptors are disturbed in rheumatoid arthritis but not in ankylosing spondylitis. J Clin Cell Immunol. 2013; 4: 2. doi: 10.4172/2155-9899.1000163

32. Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, et al. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev. 2015; 24(1): 93-103. doi: 10.1089/scd.2014.0155

33. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cellsderived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015; 11: 394-407. doi: 10.1007/s12015-014-9558-4

34. Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020; 20: 114. doi: 10.1186/s12935-020-01193-z

35. Liu H, Li R, Liu T, Yang LYi, Yin G, Xie QB. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi: 10.3389/fimmu.2020.01912

36. Afzali B, Mitchell PJ, Scottà C, Canavan J, Edozie FC, Fazekasova H, et al. Relative resistance of human CD4+ memory T cells to suppression by CD4+, CD25+ regulatory T cells: Memory cells as barriers to Treg-cell therapy. Am J Transpl. 2011; 11: 1734-1742. doi: 10.1111/j.1600-6143.2011.03635.x

37. Luque-Campos N, Contreras-López RA, Paredes-Martínez MJ, Torres MJ, Bahraoui S, Wei M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019; 10: 798. doi: 10.3389/fimmu.2019.00798

38. Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013; 4: 125. doi: 10.1186/scrt336

39. Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016; 44: 138-150. doi: 10.1016/j.exphem.2015.10.009

40. Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory and effector T cells. Stem Cell Res Ther. 2015; 6: 3. doi: 10.1186/scrt537

41. Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, et al. Antigen-presenting effects of effector memory Vγ9Vδ2 T cells in rheumatoid arthritis. Cell Mol Immunol. 2012; 9: 245-254. doi: 10.1038/cmi.2011.50

42. Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, et al. Human umbilical cord mesenchymal stem cells inhibit the function of allogeneic activated V γδ T lymphocytes in vitro. BioMed Res Int. 2015; 2015: 317801. doi: 10.1155/2015/317801

43. Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med. 2019; 17: 412. doi: 10.1186/s12967-019-02167-0

44. Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol 2017; 28: 2777-2785. doi: 10.1681/ASN.2017020151

45. Saldana L, Bensiamar F, Valles G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10: 58. doi: 10.1186/s13287-019-1156-6

46. Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019; 38: 62. doi: 10.1186/s13046-019-1027-0

47. Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun. 2019; 10: 2498. doi: 10.1038/s41467-019-10491-8

48. Das T, Bergen IM, Koudstaal T, van Hulst JAC, van Loo G, Boonstra A, et al. DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. J Autoimmun 2019; 102: 167-178. doi: 10.1016/j.jaut.2019.05.007

49. Montesinos JJ, Lopez-Garcia L, Cortes-Morales VA, ArriagaPizano L, Valle-Ríos R, Fajardo-Orduña GR, et al. Human bone marrow mesenchymal stem/stromal cells exposed to an inflammatory environment increase the expression of ICAM-1 and release microvesicles enriched in this adhesive molecule: Analysis of the participation of TNF-alpha and IFN-gamma. J Immunol Res 2020; 2020: 8839625. doi: 10.1155/2020/8839625

50. Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 2017; 14: 895-908. doi: 10.1038/cmi.2016.59

51. Goradel NH, Jahangiri S, Negahdari B. Effects of mesenchymal stem cellderived exosomes on angiogenesis in regenerative medicine, Curr. Regenerat. Med. 2018; 7(1): 46-53. doi: 10.2174/2468424408666180315101232

52. Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cellderived extracellular vesicles: A novel therapeutic paradigm, J Cell Physiol. 2020; 235(2): 706-717. doi: 10.1002/jcp.29004

53. Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13(1): 101. doi: 10.1186/s13287-022-02782-7

54. Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: The role of microvesicles. Cell Transplant. 2015; 24: 133-149. doi: 10.3727/096368913X675728

55. Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): 6977. doi: 10.1126/science.aau6977

56. Wang S, Lei B, Zhang E, Gong P, Gu J, He L, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. IntJ Nanomedicine. 2022; 17: 1757-1781. doi: 10.2147/IJN.S355366

57. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17(1): 147. doi: 10.1186/s12943-018-0897-7

58. Meng Q, Qiu B. Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression. Front Physiol. 2020; 11: 441. doi: 10.3389/fphys.2020.00441

59. Liu H, Chen Y, Yin G, Xie Q. Therapeutic prospects of microRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 2021; 277: 119458. doi: 10.1016/j.lfs.2021.119458

60. Wu H, Zhou X, Wang X, Cheng W, Hu X, Wang Y, et al. miR-34a in extracellular vesicles from bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J Cell Mol Med. 2021; 25(4): 1896-1910. doi: 10.1111/jcmm.15857

61. Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018; 201(8): 2472-2482. doi: 10.4049/jimmunol.1800304

62. Huldani H, Jasim SA, Bokov DO, Abdelbasset WK, Shalaby MN, Thangavelu L, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022; 106: 108634. doi: 10.1016/j.intimp.2022.108634

63. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, BlancBrude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018; 8(5): 1399-1410. doi: 10.7150/thno.21072

64. Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018; 27: 873-880. doi: 10.17219/acem/73720

65. Álvaro-Gracia JM, Jover JA, García-Vicu-a R, Carre-o L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): Results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/ IIa clinical trial. Ann Rheum Dis. 2017; 76: 196-202. doi: 10.1136/annrheumdis-2015-208918

66. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013; 22: 3192-3202. doi: 10.1089/scd.2013.0023

67. Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, et al.. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. Peer J. 2019; 3: 7: e7023. doi: 10.7717/peerj.7023

68. Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 2019; 11(14): 13091-13104. doi: 10.1021/acsami.8b22685

69. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016; 106: 148-156. doi: 10.1016/j.addr.2016.02.006

70. Kim KW, Kim HJ, Kim BM, Kwon YR, Kim HR, Kim YJ. Epigenetic modification of mesenchymal stromal cells enhances their suppressive effects on the Th17 responses of cells from rheumatoid arthritis patients. Stem Cell Res Ther. 2018; 9: 208. doi: 10.1186/s13287-018-0948-4

71. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7: 1535750. doi: 10.1080/20013078.2018.1535750

72. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSCderived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 7132708. doi: 10.1155/2019/7132708

73. Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018; 9: 2538. doi: 10.3389/fimmu.2018.02538

74. Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: From biology to clinical applications. IntJ Mol Sci. 2021; 22(18): 10132. doi: 10.3390/ijms221810132

75. Kahmini FR, Shahgaldi S. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp Mol Pathol. 2021; 118: 104566. doi: 10.1016/j.yexmp.2020.104566

76. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, et al.. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019; 13: 209. doi: 10.3389/fnins.2019.00209

77. Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: An update on clinical applications. Cells. 2020; 9: 1852. doi: 10.3390/cells9081852

78. Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018; 119: 8048-8073. doi: 10.1002/jcb.26726


Review

For citations:


Takoeva E.A., Kokaev R.I., Islaev A.A. Mesenchymal stem cells or extracellular vesicles in the choice of rheumatoid arthritis treatment. Acta Biomedica Scientifica. 2025;10(1):25-37. (In Russ.) https://doi.org/10.29413/ABS.2025-10.1.3

Views: 235


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)