Мезенхимальные стволовые клетки или внеклеточные везикулы в выборе лечения ревматоидного артрита
https://doi.org/10.29413/ABS.2025-10.1.3
Аннотация
Обоснование. Ревматоидный артрит (РА) – это длительное аутоиммунное заболевание, характеризующееся системной иммуновоспалительной реакцией, приводящей к отёку суставов, синовиальной гиперплазии, повреждению хрящей и костной ткани. Эффективного лечения данного заболевания в настоящее время не существует.
Цель обзора литературы. Анализ описанных на сегодняшний день механизмов, лежащих в основе эффектов мезенхимальных стволовых клеток (МСК) и внеклеточных везикул (ВВ) на патогенетические звенья ревматоидного артрита.
Материалы и методы исследования. Проанализированы базы данных PubMed и eLibrary за период 2011–2023 гг. с использованием следующих ключевых слов: ревматоидный артрит; гемопоэтические стволовые клетки; мезенхимальные стволовые клетки; ревматоидный фактор; внеклеточные везикулы; клеточная терапия.
Результаты и обсуждение. В обзоре описаны современные аспекты этиологии и патогенеза ревматоидного артрита, его потенциальные биомаркеры и известные на сегодняшний день терапевтические стратегии. Изучено влияние МСК на T- и В-лимфоциты, а также на других клеточных участников заболевания в экспериментальных и клинических исследованиях. Обзор расширяет понимание картины механизмов терапевтического воздействия постнатальных прогениторных клеток и их внеклеточных везикул в лечении ревматоидного артрита, что в аспекте сравнения открывает преимущества и недостатки каждого метода. Можно сделать вывод о том, что МСК и ВВ являются перспективным направлением в лечении ревматоидного артрита, однако необходимы дальнейшие исследования взаимодействий молекул, влияющих на звенья патогенеза РА. Также необходимы дополнительные исследования, построенные на патогенетически ранжированном подходе в терапии заболевания, позволяющем выявить закономерности эффектов каждого метода с последующей рекомендацией в выборе применения прогенитоных клеток или, преимущественно, их секретома в персонифицированной терапии РА, а также необходимо более детальное изучение дозировки, времени и способа их введения.
Об авторах
Е. А. ТакоеваРоссия
Такоева Елена Астановна – кандидат медицинских наук, научный сотрудник лаборатории клеточных технологий, 363110, РСО-Алания, Пригородный район, с. Михайловское, ул. Вильямса, 1;
старший преподаватель кафедры патологической физиологии, 362019, г. Владикавказ, ул. Пушкинская, 40
Р. И. Кокаев
Россия
Кокаев Ромеш Иванович – кандидат медицинских наук, заведующий лабораторией клеточных технологий, 363110, РСО-Алания, Пригородный район, с. Михайловское, ул. Вильямса, 1;
доцент кафедры нормальной физиологии, 362019, г. Владикавказ, ул. Пушкинская, 40
А. А. Ислаев
Россия
Ислаев Алтынбек Азраткулович – младший научный сотрудник отдела клеточных технологий, 363110, РСО-Алания, Пригородный район, с. Михайловское, ул. Вильямса, 1;
ассистент кафедры нормальной физиологии, 362019, г. Владикавказ, ул. Пушкинская, 40
Список литературы
1. Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020; 9(4): 880. doi: 10.3390/cells9040880
2. Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022; 23(2): 905. doi: 10.3390/ijms23020905
3. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers.2018; 4: 18001. doi: 10.1038/nrdp.2018.1
4. Venetsanopoulou AI, Alamanos Y, Voulgari PV, Drosos AA. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev Clin Immunol. 2022; 18(9): 923-931. doi: 10.1080/1744666X.2022.2106970
5. Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021; 44: 172-182. doi: 10.1016/j.bj.2020.06.010
6. Damerau A, Gaber T. Modeling rheumatoid arthritis in vitro: From experimental feasibility to physiological proximity. Int J Mol Sci. 2020; 21: 7916. doi: 10.3390/ijms21217916
7. Насонов Е.Л. Российские клинические рекомендации. Ревматология. М.: ГЭОТАР-Медиа; 2020.
8. Клиппел Дж.Х., Стоун Дж.Х., Кроффорд Л.Дж., Уайт П.Х. (ред.). Ревматические заболевания: практическое руководство; в 3 т. М.: ГЭОТАР-Медиа; 2014; 2.
9. Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020; 16: 301-315. doi: 10.1038/s41584-020-0409-1
10. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018; 320(13): 1360-1372. doi: 10.1001/jama.2018.13103
11. Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation lessons from rheumatoid arthritis. Front Immunol. 2019; 10: 353. doi: 10.3389/fimmu.2019.00353
12. Kwon EJ, Ju JH. Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation. Int J Mol Sci. 2021; 22: 10576. doi: 10.3390/ijms221910576
13. Komatsu N, Win S, Yan M, Huynh NC, Sawa S, Tsukasaki M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Investig. 2021; 131: e143060. doi: 10.1172/JCI143060
14. Coutant F. Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for glycosylation. Joint Bone Spine. 2019; 86(5): 562-567. doi: 10.1016/j.jbspin.2019.01.005
15. Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokinemediated bone destruction in rheumatoid arthritis. JImmunol Res. 2014; 2014: 263625. doi: 10.1155/2014/263625
16. Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019; 14(5): 364. doi: 10.3389/fmed.2018.00364
17. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015; 18(4): 433-448. doi: 10.1007/s10456-015-9477-2
18. Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells. 2021; 10(11): 3017. doi: 10.3390/cells10113017
19. Singh JA. Treatment guidelines in rheumatoid arthritis. Rheum Dis Clin North Am. 2022; 48(3): 679-689. doi: 10.1016/j.rdc.2022.03.005
20. Debreova M, Culenova M, Smolinska V, Nicodemou A, Csobonyeiova M, Danisovic L. Rheumatoid arthritis: From synovium biology to cell-based therapy. 2022; 24: 365-375. doi: 10.1016/j.jcyt.2021.10.003
21. Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Ther. 2022; 13(1): 101. doi: 10.1186/s13287-022-02782-7
22. Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. World J Stem Cells. 2020; 12(7): 688-705. doi: 10.4252/wjsc.v12.i7.688
23. Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol. 2021; 12: 626193. doi: 10.3389/fimmu.2021.626193
24. Sarsenova M, Issabekova A, Abisheva S, Rutskaya-Moroshan K, Ogay V, Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci. 2021; 22(21): 11592. doi: 10.3390/ijms222111592
25. Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi: 10.3389/fimmu.2020.01912
26. Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrere-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019; 10: 232. doi: 10.1186/s13287-019-1307-9
27. Vasilev G, Ivanova M, Ivanova-Todorova E, Tumangelova-Yuzeir K, Krasimirova E, Stoilov R, et al. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int. 2019; 39: 819-826. doi: 10.1007/s00296-019-04296-7
28. Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev. 2019; 288: 85-96. doi: 10.1111/imr.12740
29. Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells. 2018; 7: 161. doi: 10.3390/cells7100161
30. Gowhari Shabgah A, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Ghoryani M, Mohammadi M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene. 2020; 732: 144336. doi: 10.1016/j.gene.2020.144336
31. Gaugler B, Laheurte C, Bertolini E, Pugin A, Wendling D, Saas P, et al. Peripheral blood B cell subsets and BAFF/APRIL levels and their receptors are disturbed in rheumatoid arthritis but not in ankylosing spondylitis. J Clin Cell Immunol. 2013; 4: 2. doi: 10.4172/2155-9899.1000163
32. Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, et al. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev. 2015; 24(1): 93-103. doi: 10.1089/scd.2014.0155
33. Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cellsderived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015; 11: 394-407. doi: 10.1007/s12015-014-9558-4
34. Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020; 20: 114. doi: 10.1186/s12935-020-01193-z
35. Liu H, Li R, Liu T, Yang LYi, Yin G, Xie QB. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi: 10.3389/fimmu.2020.01912
36. Afzali B, Mitchell PJ, Scottà C, Canavan J, Edozie FC, Fazekasova H, et al. Relative resistance of human CD4+ memory T cells to suppression by CD4+, CD25+ regulatory T cells: Memory cells as barriers to Treg-cell therapy. Am J Transpl. 2011; 11: 1734-1742. doi: 10.1111/j.1600-6143.2011.03635.x
37. Luque-Campos N, Contreras-López RA, Paredes-Martínez MJ, Torres MJ, Bahraoui S, Wei M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019; 10: 798. doi: 10.3389/fimmu.2019.00798
38. Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013; 4: 125. doi: 10.1186/scrt336
39. Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016; 44: 138-150. doi: 10.1016/j.exphem.2015.10.009
40. Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory and effector T cells. Stem Cell Res Ther. 2015; 6: 3. doi: 10.1186/scrt537
41. Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, et al. Antigen-presenting effects of effector memory Vγ9Vδ2 T cells in rheumatoid arthritis. Cell Mol Immunol. 2012; 9: 245-254. doi: 10.1038/cmi.2011.50
42. Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, et al. Human umbilical cord mesenchymal stem cells inhibit the function of allogeneic activated V γδ T lymphocytes in vitro. BioMed Res Int. 2015; 2015: 317801. doi: 10.1155/2015/317801
43. Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med. 2019; 17: 412. doi: 10.1186/s12967-019-02167-0
44. Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol 2017; 28: 2777-2785. doi: 10.1681/ASN.2017020151
45. Saldana L, Bensiamar F, Valles G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10: 58. doi: 10.1186/s13287-019-1156-6
46. Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019; 38: 62. doi: 10.1186/s13046-019-1027-0
47. Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun. 2019; 10: 2498. doi: 10.1038/s41467-019-10491-8
48. Das T, Bergen IM, Koudstaal T, van Hulst JAC, van Loo G, Boonstra A, et al. DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. J Autoimmun 2019; 102: 167-178. doi: 10.1016/j.jaut.2019.05.007
49. Montesinos JJ, Lopez-Garcia L, Cortes-Morales VA, ArriagaPizano L, Valle-Ríos R, Fajardo-Orduña GR, et al. Human bone marrow mesenchymal stem/stromal cells exposed to an inflammatory environment increase the expression of ICAM-1 and release microvesicles enriched in this adhesive molecule: Analysis of the participation of TNF-alpha and IFN-gamma. J Immunol Res 2020; 2020: 8839625. doi: 10.1155/2020/8839625
50. Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 2017; 14: 895-908. doi: 10.1038/cmi.2016.59
51. Goradel NH, Jahangiri S, Negahdari B. Effects of mesenchymal stem cellderived exosomes on angiogenesis in regenerative medicine, Curr. Regenerat. Med. 2018; 7(1): 46-53. doi: 10.2174/2468424408666180315101232
52. Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cellderived extracellular vesicles: A novel therapeutic paradigm, J Cell Physiol. 2020; 235(2): 706-717. doi: 10.1002/jcp.29004
53. Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13(1): 101. doi: 10.1186/s13287-022-02782-7
54. Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: The role of microvesicles. Cell Transplant. 2015; 24: 133-149. doi: 10.3727/096368913X675728
55. Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): 6977. doi: 10.1126/science.aau6977
56. Wang S, Lei B, Zhang E, Gong P, Gu J, He L, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. IntJ Nanomedicine. 2022; 17: 1757-1781. doi: 10.2147/IJN.S355366
57. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17(1): 147. doi: 10.1186/s12943-018-0897-7
58. Meng Q, Qiu B. Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression. Front Physiol. 2020; 11: 441. doi: 10.3389/fphys.2020.00441
59. Liu H, Chen Y, Yin G, Xie Q. Therapeutic prospects of microRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 2021; 277: 119458. doi: 10.1016/j.lfs.2021.119458
60. Wu H, Zhou X, Wang X, Cheng W, Hu X, Wang Y, et al. miR-34a in extracellular vesicles from bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J Cell Mol Med. 2021; 25(4): 1896-1910. doi: 10.1111/jcmm.15857
61. Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018; 201(8): 2472-2482. doi: 10.4049/jimmunol.1800304
62. Huldani H, Jasim SA, Bokov DO, Abdelbasset WK, Shalaby MN, Thangavelu L, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022; 106: 108634. doi: 10.1016/j.intimp.2022.108634
63. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018; 8(5): 1399-1410. doi: 10.7150/thno.21072
64. Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018; 27: 873-880. doi: 10.17219/acem/73720
65. Álvaro-Gracia JM, Jover JA, García-Vicuña R, Carreño L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): Results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/ IIa clinical trial. Ann Rheum Dis. 2017; 76: 196-202. doi: 10.1136/annrheumdis-2015-208918
66. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013; 22: 3192-3202. doi: 10.1089/scd.2013.0023
67. Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, et al.. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. Peer J. 2019; 3: 7: e7023. doi: 10.7717/peerj.7023
68. Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 2019; 11(14): 13091-13104. doi: 10.1021/acsami.8b22685
69. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016; 106: 148-156. doi: 10.1016/j.addr.2016.02.006
70. Kim KW, Kim HJ, Kim BM, Kwon YR, Kim HR, Kim YJ. Epigenetic modification of mesenchymal stromal cells enhances their suppressive effects on the Th17 responses of cells from rheumatoid arthritis patients. Stem Cell Res Ther. 2018; 9: 208. doi: 10.1186/s13287-018-0948-4
71. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7: 1535750. doi: 10.1080/20013078.2018.1535750
72. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSCderived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 7132708. doi: 10.1155/2019/7132708
73. Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018; 9: 2538. doi: 10.3389/fimmu.2018.02538
74. Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: From biology to clinical applications. IntJ Mol Sci. 2021; 22(18): 10132. doi: 10.3390/ijms221810132
75. Kahmini FR, Shahgaldi S. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp Mol Pathol. 2021; 118: 104566. doi: 10.1016/j.yexmp.2020.104566
76. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, et al.. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019; 13: 209. doi: 10.3389/fnins.2019.00209
77. Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: An update on clinical applications. Cells. 2020; 9: 1852. doi: 10.3390/cells9081852
78. Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018; 119: 8048-8073. doi: 10.1002/jcb.26726
Рецензия
Для цитирования:
Такоева Е.А., Кокаев Р.И., Ислаев А.А. Мезенхимальные стволовые клетки или внеклеточные везикулы в выборе лечения ревматоидного артрита. Acta Biomedica Scientifica. 2025;10(1):25-37. https://doi.org/10.29413/ABS.2025-10.1.3
For citation:
Takoeva E.A., Kokaev R.I., Islaev A.A. Mesenchymal stem cells or extracellular vesicles in the choice of rheumatoid arthritis treatment. Acta Biomedica Scientifica. 2025;10(1):25-37. (In Russ.) https://doi.org/10.29413/ABS.2025-10.1.3