Preview

Acta Biomedica Scientifica

Advanced search

Inflammation-associated signal pathways activation during drug resistance development in cancer cells

https://doi.org/10.29413/ABS.2025-10.3.5

Abstract

Background. Cancer drug resistance represents an obvious problem in clinical oncology. Among various intracellular pathways activated during drug resistance development, proinflammatory cascades considered to be involved as well. The inflammatory process may also play a key role in the formation of melanoma resistance to the chemotherapeutic agent dacarbazine.
The aim. To characterize differentially expressed genes and signaling pathways associated with cancer resistance to alkylating agent dacarbazine in melanoma cells in vivo with the use of high-throughput sequencing for transcriptomic profiling.
Methods. The effect of dacarbazine on melanoma cell gene expression was studied in a C57Bl6/B16 melanoma model in vivo. Mice were injected intraperitoneally with dacarbazine (50 mg/kg) on days 8, 10, and 12 after melanoma tumor transplantation. Total RNA was extracted from tumor nodes on the 14th day after melanoma transplantation to animals and the transcriptome was analyzed using a next generation sequencing method. Bioinformatic analysis was applied to identify differentially expressed genes and corresponding signal pathways.
Results. Twenty one differentially expressed genes were identified, of which an increase in expression was observed in 10 genes, and a decrease in expression activity was observed in 11 genes involved in signaling pathways associated with the inflammatory process “Comprehensive IL-17A signaling”, “Oxidative stress and redox pathway”, “TNF alpha NF-kB signaling pathway”.
Conclusions. Dacarbazine alters the expression of genes regulating inflammation, which may play a role in the development of chemoresistance.

About the Authors

E. Z. Lapkina
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Ekaterina Z. Lapkina – Cand. Sc. (Biol.), associate Professor Pathophysiology Department 

P. Zeleznyak str., 1, Krasnoyarsk 660022



I. S. Zinchenko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Ivan S. Zinchenko – assistant of the Pathophysiology department 

P. Zeleznyak str., 1, Krasnoyarsk 660022



Е. I. Bondar
Siberian Federal University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Evgeniya I. Bondar – Cand. Sc. (Biol.), senior researcher at the Laboratory of Genomic Research and Biotechnology; senior lecturer at the Department of genomics and bioinformatics 

Svobodny Ave., 79, Krasnoyarsk 660041;
Akademgorodok Str., 50, Krasnoyarsk 660036



E. Yu. Sergeeva
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Ekaterina Yu. Sergeeva – Dr. Sc. (Med.), Professor, Professor of the Pathophysiology department 

P. Zeleznyak str., 1, Krasnoyarsk 660022



T. G. Ruksha
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Tatiana G. Ruksha – Dr. Sc. (Med.), Professor, Head of the Pathophysiology Department 

P. Zeleznyak str., 1, Krasnoyarsk 660022



References

1. Lu S, Li Y, Zhu C, Wang W, Zhou Y. Managing Cancer Drug Resistance from the Perspective of Inflammation. J Oncol. 2022; 19: 3426407. doi: 10.1155/2022/3426407

2. Yeh YW, Hsu TW, Su YH, Wang CH, Liao PH, Chiu CF, et al. Silencing of Dicer enhances dacarbazine resistance in melanoma cells by inhibiting ADSL expression. Aging (Albany NY). 2023; 15(22): 12873-12889. doi: 10.18632/aging.205207

3. Deng Q, Gao Y, Wang Y, Mao J, Yan Y, Yang Z, et al. LSD1 inhibition by tranylcypromine hydrochloride reduces alkali burn-induced corneal neovascularization and ferroptosis by suppressing HIF-1α pathway. Front Pharmacol. 2024; 15: 1411513. doi: 10.3389/fphar.2024.1411513

4. Artyukhov I.P., Gavrilyuk D.V., Dyhno Yu.A., Ruksha T.G. The incidence of skin melanoma in the adult population of the Krasnoyarsk Territory. Siberian Medical Review. 2013; 6(84): 37–42. (In Russ.).

5. Nishida A, Andoh A. The role of inflammation in cancer: mechanisms of tumor initiation, progression, and metastasis. Cells. 2025; 14(7): 488. doi: 10.3390/cells14070488

6. Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer. 2022; 8(7): 556-569. doi: 10.1016/j.trecan.2022.03.004

7. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); 2011. doi: 10.17226/12910

8. FASTQC. URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [date of access: February 1, 2025].

9. Wang Q, Shen Y, Hu H, Fan C, Zhang A, Ding R, et al. Systematic Transcriptome Analysis of Noise-Induced Hearing Loss Pathogenesis Suggests Inflammatory Activities and Multiple Susceptible Molecules and Pathways. Front Genet. 2020; 11: 968. doi: 10.3389/fgene.2020.00968

10. Liu S, Wu C, Zhang Y. Transcriptomics analyses of IL-1β-stimulated rat chondrocytes in temporomandibular joint condyles and effect of platelet-rich plasma. Heliyon. 2024; 10(4): e26739. doi: 10.1016/j.heliyon.2024. e26739

11. Clemente TM, Augusto L, Angara RK, Gilk SD. Coxiella burnetii actively blocks IL-17-induced oxidative stress in macrophages. bioRxiv [Preprint]. 2023: 2023.03.15.532774. doi: 10.1101/2023.03.15.532774

12. Chen X, Ruiz-Velasco A, Zou Z, Hille SS, Ross C, Fonseka O, et al. PAK3 Exacerbates Cardiac Lipotoxicity via SREBP1c in Obesity Cardiomyopathy. Diabetes. 2024; 73(11): 1805-1820. doi: 10.2337/db24-0240

13. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013; 12(12): 931-947. doi: 10.1038/nrd4002

14. Papadopoulou D, Mavrikaki V, Charalampous F, Tzaferis C, Samiotaki M, Papavasileiou KD, et al. Discovery of the First-in-Class Inhibitors of Hypoxia Up-Regulated Protein 1 (HYOU1) Suppressing Pathogenic Fibroblast Activation. Angew Chem Int Ed Engl. 2024; 63(14): e202319157. doi: 10.1002/anie.202319157

15. Liu DM, Yang D, Zhou CY, Wu JS, Zhang GL, Wang P, et al. Aloe-emodin induces hepatotoxicity by the inhibition of multidrug resistance protein 2. Phytomedicine. 2020; 68: 153148. doi: 10.1016/j.phymed.2019.153148

16. Dasgupta N, Lei X, Shi CH, Arnold R, Teneche MG, Miller KN, et al. Histone chaperone HIRA, promyelocytic leukemia protein, and p62/SQSTM1 coordinate to regulate inflammation during cell senescence. Mol Cell. 2024; 84(17): 3271-3287.e8. doi: 10.1016/j.molcel.2024.08.006

17. Liu X, Zhang G, Liu L, Xiong G, Liu J, Wei W. USP2 Promotes the Proliferation and Inflammation of Fibroblast-Like Synovial Cells in Rheumatoid Arthritis Through Deubiquitination of TRAF2. Biochem Genet. 2024; 13. doi: 10.1007/s10528-024-10737-1

18. Lee TG, Woo SM, Seo SU, Kim S, Park JW, Chang YC, et al. Inhibition of USP2 Enhances TRAIL-Mediated Cancer Cell Death through Downregulation of Survivin. Int J Mol Sci. 2023; 24(16): 12816. doi: 10.3390/ijms241612816

19. Zhang Z, Sun D, Tang H, Ren J, Yin S, Yang K. PER2 binding to HSP90 enhances immune response against oral squamous cell carcinoma by inhibiting IKK/NF-κB pathway and PD-L1 expression. J Immunother Cancer. 2023; 11(11): e007627. doi: 10.1136/jitc-2023-007627

20. Zhu L, Zhang S, Huan X, Mei Y, Yang H. Down-regulation of TRAF4 targeting RSK4 inhibits proliferation, invasion and metastasis in breast cancer xenografts. Biochem Biophys Res Commun. 2018; 500(3): 810-816. doi: 10.1016/j.bbrc.2018.04.164

21. Tang Y, Yang K, Liu Q, Ma Y, Zhu H, Tang K, et al. Preosteoclast plays a pathogenic role in syndesmophyte formation of ankylosing spondylitis through the secreted PDGFB – GRB2/ERK/RUNX2 pathway. Arthritis Res Ther. 2023; 25(1): 194. doi: 10.1186/s13075-023-03142-3

22. Delgobo M, Weiß E, Ashour D, Richter L, Popiolkowski L, Arampatzi P, et al. Myocardial Milieu Favors Local Differentiation of Regulatory T Cells. Circ Res. 2023; 132(5): 565-582. doi: 10.1161/CIRCRESAHA.122.322183

23. Sun Y, Xu H, Gao W, Deng J, Song X, Li J, et al. S100a8/A9 proteins: critical regulators of inflammation in cardiovascular diseases. Front Cardiovasc Med. 2024; 11: 1394137. doi: 10.3389/fcvm.2024.1394137

24. Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells. 2022; 11(7): 1226. doi: 10.3390/cells11071226

25. Dou Q, Turanov AA, Mariotti M, Hwang JY, Wang H, Lee SG, et al. Selenoprotein TXNRD3 supports male fertility via the redox regulation of spermatogenesis. J Biol Chem. 2022; 298(8): 102183. doi: 10.1016/j.jbc.2022.102183

26. Hu K, Li K, Lv J, Feng J, Chen J, Wu H, et al. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 2020; 130(4): 1752-1766. doi: 10.1172/JCI124049

27. Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, et al. NF-kappaB Regulates PD-1 Expression in Macrophages. J Immunol. 2015; 194(9): 4545–4554. doi: 10.4049/jimmunol.1402550

28. Zhao Y, Li Z, Chen Y, Li Y, Lu J. Suppression of P2X7R by Local Treatment Alleviates Acute Gouty Inflammation. J Inflamm Res. 2023; 16: 3581-3591. doi: 10.2147/JIR.S421548

29. Lapkina E, Zinchenko I, Kutcenko V, Bondar E, Kirichenko A, Yamskikh I, et al. MiR-204-5p overexpression abrogates Dacarbazine-induced senescence in melanoma cells in vivo. Noncoding RNA Res. 2024; 10: 130-139. doi: 10.1016/j.ncrna.2024.09.009

30. Trousil S, Lee P, Edwards RJ, Maslen L, LozanKuehne JP, Ramaswami R, et al. Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol. 2019; 176(18): 3712-3722. doi: 10.1111/bph.14776

31. Cao C, Tian B, Geng X, Zhou H, Xu Z, Lai T, et al. IL-17-Mediated Inflammation Promotes Cigarette Smoke-Induced Genomic Instability. Cells. 2021; 10(5): 1173. doi: 10.3390/cells10051173

32. Warren CFA, Wong-Brown MW, Bowden NA. BCL2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019; 10(3): 177. doi: 10.1038/s41419-019-1407-6

33. He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci. 2020; 21(13): 4777. doi: 10.3390/ijms21134777

34. Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, et al. N-terminal kinase signaling in cellular senescence. Arch Toxicol. 2023; 97(8): 2089-2109. doi: 10.1007/s00204-023-03540-1

35. Cowman SJ, Koh MY. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 2022; 8(1): 28-42. doi: 10.1016/j.trecan.2021.10.004

36. Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet. 2022; 38(7): 676-707. doi: 10.1016/j.tig.2022.03.010


Supplementary files

Review

For citations:


Lapkina E.Z., Zinchenko I.S., Bondar Е.I., Sergeeva E.Yu., Ruksha T.G. Inflammation-associated signal pathways activation during drug resistance development in cancer cells. Acta Biomedica Scientifica. 2025;10(3):49-58. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.5

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)