Preview

Acta Biomedica Scientifica

Advanced search

Effect of agar and biofilm culture of Francisella tularensis on TLR2 and TLR4 genes expression in blood and spleen cells of experimental animals

https://doi.org/10.29413/ABS.2025-10.3.22

Abstract

Biofilm as a form of existence of many bacteria that allows them to survive in unfavorable environmental conditions. Such pathogens include some strains of tularemia pathogen. Immunogenic properties of Francisella tularensis strains capable of biofilm formation are insufficiently studied. One of the key indicators of the activation of innate immunity is an increase in the level of TLRs expression. A comparative analysis of TLRs gene expression in immunocompetent cells of animals infected with biofilm and agar cultures will allow us to assess the degree of their adaptive capacity to the pathogen, as well as add to the existing data on the pathogenesis of tularemia.
The aim. To evaluate the effect of biofilm and agar cultures of F. tularensis on the expression of TLRs genes of types 2 and 4 by blood and spleen cells of white mice.
Materials and methods. The study was carried out on 125 certified mongrel white mice. Material (blood and spleen) was collected on days 1, 2, 3, 7 and 14. Seven-dayold biofilm and two-day-old agar cultures of attenuated vaccine strain F. tularensis 15B of the NIIEG line and avirulent F. tularensis I-384 were used to create experimental tularemia infection. RNA molecule detection and reverse transcription were performed using commercial reagent kits. TLR2 and TLR4 cDNA concentration was determined by real-time PCR using specific primers.
Comparative analysis of TLR2 and TLR4 gene expression in response to the introduction of biofilm and agar cultures of F. tularensis revealed a statistically significant increase in TLRs gene expression in cells of experimental animals infected with biofilm cultures compared to agar cultures.
Conclusion. The obtained results indicate a significant effect of F. tularensis subspecies and conditions of its cultivation on TLR2 and TLR4 genes expression in blood and spleen cells of white mice in experimental tularemia.

About the Authors

V. I. Dubrovina
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Valentina I. Dubrovina – Dr. Sc. (Biol.), Head of Pathophysiological Laboratory 

st. Trilissera 78, Irkutsk 664047



A. B. Pyatidesyatnikova
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Anna B. Pyatidesyatnikova – Junior Research of Pathophysiological Laboratory 

st. Trilissera 78, Irkutsk 664047



O. V. Yuryeva
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Olga V. Yurieva – Cand. Sc. (Biol.), senior researcher of Pathophysiological Laboratory 

st. Trilissera 78, Irkutsk 664047



K. M. Korytov
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Konstantin M. Korytov – Research Officer, Pathophysiological Laboratory 

st. Trilissera 78, Irkutsk 664047



T. P. Starovoitova
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Tatyana P. Starovoytova – Research Officer of Pathophysiological Laboratory 

st. Trilissera 78, Irkutsk 664047



A. V. Mazepa
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Andrey V. Mazepa – Cand. Sc. (Med.), Leading Researcher of Department of Epidemiology 

st. Trilissera 78, Irkutsk 664047



K. V. Naumova
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Ksenia V. Naumova – Junior researcher of the Epidemiologic Department 

st. Trilissera 78, Irkutsk 664047



S. V. Balakhonov
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Sergey V. Balakhonov – Dr. Sc. (Med.), Professor, Director 

st. Trilissera 78, Irkutsk 664047



References

1. Schaudinn C, Rydzewski K, Meister B, Grunow R, Heuner K. Francisella tularensis subsp. holarctica wild-type is able to colonize natural aquatic ex vivo. Front Microbiol. 2023; (14): 1113412. doi: 10.3389/fmicb.2023.1113412

2. Mlynek K, Lopez CT, Fetterer DP, Williams JA, Bozue JA. Phase variation of LPS and capsule is responsible for stochastic biofilm formation in Francisella tularensis. Frontiers in Cellular and Infection Microbiology. 2022; 11: 16. doi: 10.3389/fcimb.2021.808550

3. Ilyina TS, Romanova YuM. Bacterial biofilms: their role in chronical infection processes and the means to combat them. Molecular Genetics, Microbiology and Virology. 2021; 39(2): 1424. (In Russ.). doi: 10.17116/molgen20213902114

4. Brunet CD, Hennebique A, Peyroux J, Pelloux I, Caspar Y, Maurin M. Presence of Francisella tularensis subsp. holarctica DNA in the aquatic environment in France. Microorganisms. 2021; 9: 1398. doi: 10.3390/microorganisms9071398

5. Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg. Microbes Infect. 2019; 8(1): 1027–1042. doi: 10.1080/22221751.2019.1638734

6. Ozanic M, Marecic V, Kwaik YA, Santic M. The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog. 2015; 11(12): e1005208. doi: 10.1371/journal.ppat.1005208

7. Hennebique A, Peyroux J, Brunet C, Martin A, Henry T, Knezevic M, et al. Amoebae can promote the survival of Francisella species in the aquatic environment. Emerg Microbes Infect. 2021; 10(1): 277-290. doi: 10.1080/22221751.2021.1885999

8. Kudryavtseva TY, Mokrievich AN. Strategies for tularemia pathogen survival, spread and virulence. Russian Journal of Infection and Immunity. 2024; 14(1): 9-23. (In Russ.). doi: 10.15789/2220-7619-SFT-17576

9. Lewisch E, Menanteau-Ledouble S, Tichy A, El-Matbouli M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. Dis. Aquat. Organ. 2016; 121(2): 161–166. doi: 10.3354/dao03044

10. Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell. Infect. Microbiol. 2014; 4: 35. doi: 10.3389/fcimb.2014.00035

11. Whipp MJ, Davis JM, Lum G, Boer J, Zhou Y, Bearden SW, et al. Characterization of a novicida-like sub-species of Francisella tularensis isolated in Australia. Journal of Medical Microbiology. 2003; 52(9): 839-842. doi: 10.1099/jmm.0.05245-0

12. Kuznetsova EM, Volokh OA, Avdeeva NG, Samokhvalova YuI. Characteristics of the protective antigen complex obtained from Francisella tularensis ssp. novicida. Problems of Particularly Dangerous Infections. 2017; (2): 63-66. (In Russ.). doi: 10.21055/0370-1069-2017-2-63-66

13. Biot FV, Bachert BA, Mlynek KD, Toothman RG, Koroleva GI, Lovett SP, et al. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): effects on biofilm formation and fitness. Frontiers in Microbiology. 2020; 11: 593542. doi: 10.3389/fmicb.2020.593542

14. Titova SV, Anisimova AS, Aronova NV. Formation of Klebsiella pneumoniae biofilm on an abiotic substrate. Proceedings of the VIII National Congress of Bacteriologists. Moscow: Dynasty Publishing House. 2023: 133-134. (In Russ.).

15. Cantlay S, Garrison NL, Patterson R, Wagner K, Kirk Z, Fan J, et al. Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state. Front. Microbiol. 2024; 15: 1347488. doi: 10.3389/fmicb.2024.1347488

16. Gorbatov AА, Titareva GM, Kravchenko TB, Shaykhutinova RZ, Gerasimov VN, Mokrievich AN, et al. Effect of the O-Antigen Chemical Structure in Different Subspecies of Francisella tularensis on Immunological Reactions. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology. 2019; 19(2): 207-215. (In Russ.). doi: 10.18500/1816-9775-2019-19-2-207-215

17. Benziger PT, Kopping EJ, McLaughlin PA, Thanassi DG. Francisella tularensis disrupts TLR2-MYD88-p38 signaling early during infection to delay apoptosis of macrophages and promote virulence in the host. mBio. 2023; 14(4): 01136-23. doi: 10.1128/mbio.01136-23

18. Gillette DD, Tridandapani S, Butchar JP. Monocyte/ macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front. Cell. Infect. Microbiol. 2014; (4): 18. doi: 10.3389/fcimb.2014.00018

19. Naumova KV, Mazepa AV, Syngeeva AK, Kulikalova ES. Study of the ability of Francisella tularensis strains to biofilm formation. Sanitary Doctor. 2021; (8): 69-74. (In Russ.). doi: 10.33920/med-08-2108-10

20. Lin X, Fang D, Zhou H, Su SB. The expression of Toll-like receptors in murine Müller cells, the glial cells in retina. Neurol Sci. 2013; 34(8): 1339-46. doi: 10.1007/s10072-012-1236-1


Supplementary files

Review

For citations:


Dubrovina V.I., Pyatidesyatnikova A.B., Yuryeva O.V., Korytov K.M., Starovoitova T.P., Mazepa A.V., Naumova K.V., Balakhonov S.V. Effect of agar and biofilm culture of Francisella tularensis on TLR2 and TLR4 genes expression in blood and spleen cells of experimental animals. Acta Biomedica Scientifica. 2025;10(3):208-216. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.22

Views: 84


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)