1. Киселева Т.Н., Оганесян О.Г., Романова Л.И., Милаш С.В., Пенкина А.В. Оптическая биометрия глаза: принцип и диагностические возможности метода. Российская педиатрическая офтальмология. 2017; 12(1): 35-42.
2. Першин К.Б., Пашинова Н.Ф., Лих И.А., Цыганков А.Ю., Легких С.Л. Особенности расчета оптической силы интраокулярных линз на экстремально коротких глазах. Офтальмология. 2022; 19(1): 91-97.
3. Трубилин В.Н., Ильинская И.А. Определение оптической силы роговицы с помощью различных методов исследования. Обзор литературы. Катарактальная и рефракционная хирургия. 2014; 14(2): 4-9.
4. Куликов А.Н., Даниленко Е.В., Кожевников Е.Ю. Сравнение различных вариантов кератометрии у пациентов с роговичным астигматизмом. Российский офтальмологический журнал. 2022; 15(2 Прил): 84-92.
5. Дога А.В., Майчук Н.В., Мушкова И.А., Шамсетдинова Л.Т. Причины, профилактика и коррекция рефракционных нарушений после факоэмульсификации с имплантацией интраокулярных линз. Вестник офтальмологии. 2019; 135(6): 83-90.
6. Дога А.В., Кечин Е.В., Головин А.В., Каримова А.Н., Цикаришвили Н.Р., Джабер А.Н. Интраокулярная коррекция пресбиопии после лазерной кераторефракционной хирургии. Офтальмохирургия. 2022; 3: 98-104.
7. Эскина Э.Н., Белогурова А.В., Паршина В.А., Мовсесян М.Х. Предсказуемость рефракционного эффекта при выполнении лазерной коррекции зрения. Определяющие факторы. Обзор литературы. Офтальмология. 2023; 20(1): 41-52.
8. Сомов Е.Е. Клиническая анатомия органа зрения человека. М.: МЕДпресс-информ; 2016.
9. Куликов А.Н., Кокарева Е.В., Котова Н.А. Сравнение результатов биометрии глаза при использовании различных приборов. Тихоокеанский медицинский журнал. 2017; 2: 53-54.
10. Куликов А.Н., Кокарева Е.В., Котова Н.А. Сравнение результатов измерений параметров глаза с помощью «Lenstar 900 LS» и «IOLMaster», «Pentacam HR», «OPD-Scan II» перед факоэмульсификацией катаракты. Современные технологии в офтальмологии. 2016; 5: 58-61.
11. Gutmark R, Guyton DL. Origins of the keratometer and its evolving role in ophthalmology. Surv Ophthalmol. 2010; 55(5): 481-497. https://doi.org/10.1016/j.survophthal.2010.03.001
12. Godefrooij DA, Galvis V, Tello A. Von Helmholtz’s ophthalmometer: Historical review and experience with one of the last surviving original devices. Acta Ophthalmol. 2018; 96(3): 314-320. https://doi.org/10.1111/aos.13493
13. Khurana AK, Khurana AK, Khurana B. Theory and practice of optics and refraction. Elsevier India; 2014.
14. Gurnani B, Kaur K. Keratometer. StatPearls Publishing; 2022.
15. Berjandy F, Nabovati P, Hashemi H, Yekta A, Ostadimoghaddam H, Sardari S, et al. Predicting initial base curve of the rigid contact lenses according to Javal keratometry findings in patients with keratoconus. Cont Lens Anterior Eye. 2020; 44(3): 101340. https://doi.org/10.1016/j.clae.2020.05.009
16. Hamer CA, Buckhurst H, Purslow C, Shum GL, Habib NE, Buckhurst PJ. Comparison of reliability and repeatability of corneal curvature assessment with six keratometers. Clin Exp Optom. 2016; 99(6): 583-589. https://doi.org/10.1111/cxo.12329
17. Dehnavi Z, Khabazkhoob M, Mirzajani A, Jabbarvand M, Yekta A, Jafarzadehpur E. Comparison of the corneal power measurements with the TMS4-Topographer, Pentacam HR, IOLMaster, and Javal keratometer. Middle East Afr J Ophthalmol. 2015; 22(2): 233-237. https://doi.org/10.4103/0974-9233.151884
18. Douthwaite WA, Burek H. The Bausch and Lomb keratometer does not measure the tangential radius of curvature. Ophthalmic Physiol Opt. 1995; 15(3): 187-193. https://doi.org/10.1016/0275-5408(95)90570-r
19. Szirth BC, Matsumoto E, Wright KW, Murphree AL. Attachment for the Bausch & Lomb keratometer in pediatrics. J Pediatr Ophthalmol Strabismus. 1987; 24(4): 186-189. https://doi.org/10.3928/0191-3913-19870701-09
20. Kane JX, Chang DF. IOL power formulas, biometry, and intraoperative aberrometry: A review. Ophthalmology. 2020; 128(11): 94-114. https://doi.org/10.1016/j.ophtha.2020.08.010
21. Mylonas G, Sacu S, Buehl W, Ritter M, Georgopoulos M, Schmidt-Erfurth U. Performance of three biometry devices in patients with different grades of age-related cataract. Acta Ophthalmol. 2011; 89: 237-241. https://doi.org/10.1111/j.1755-3768.2010.02042.x
22. Symes RJ, Ursell PG. Automated keratometry in routine cataract surgery: Comparison of Scheimpflug and conventional values. J Cataract Refract Surg. 2011; 37(2): 295-301. https://doi.org/10.1016/j.jcrs.2010.08.050
23. Rio-Cristobal A, Martin R. Corneal assessment technologies: Current status. Surv Ophthalmol. 2014; 59(6): 599-614. https://doi.org/10.1016/j.survophthal.2014.05.001
24. Huang J, McAlinden C, Huang Y, Wen D, Savini G, Tu R, et al. Meta-analysis of optical low-coherence reflectometry versus partial coherence interferometry biometry. Sci Rep. 2017; 7(1): 43414. https://doi.org/10.1038/srep43414
25. McAlinden C, Wang Q, Pesudovs K, Yang X, Bao F, Yu A, et al. Axial length measurement failure rates with the IOLMaster and Lenstar LS 900 in eyes with cataract. PLoS One. 2015; 10(6): e0128929. https://doi.org/10.1371/journal.pone.0128929
26. Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000; 238: 765-773. https://doi.org/10.1007/s004170000188
27. Li X, Cao X, Bao Y. Comparison of total corneal astigmatism between IOLMaster and Pentacam. BioMed Res Int. 2022; 2022: 92360006. https://doi.org/10.1155/2022/9236006
28. Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014; 40(5): 709-715. https://doi.org/10.1016/j.jcrs.2013.09.020
29. Pereira JM, Neves A, Alfaiate P, Santos M, Aragão H, Sousa JC. Lenstar® LS 900 vs Pentacam®-AXL: Comparative study of ocular biometric measurements and intraocular lens power calculation. Eur J Ophthalmol. 2018; 28(6): 645-651. https://doi.org/10.1177/1120672118771844
30. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davie LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol. 2009; 93(7): 949-953. https://doi.org/10.1136/bjo.2008.156554
31. Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM. Evaluation of the Lenstar LS 900 non-contact biometer. Br J Ophthalmol. 2010; 94(1): 106-110. https://doi.org/10.1136/bjo.2009.161729
32. Uçakhan ÖÖ, Akbel V, Bıyıklı Z, Kanpolat A. Comparison of corneal curvature and anterior chamber depth measurements using the manual keratometer, Lenstar LS 900 and the Pentacam. Middle East Afr J Ophthalmol. 2013; 20(3): 201. https://doi.org/10.4103/0974-9233.114791
33. Ventura BV, Ventura MC, Wang L, Koch DD, Weikert MP. Comparison of biometry and intraocular lens power calculation performed by a new optical biometry device and a reference biometer. J Cataract Refract Surg. 2017; 43(1): 74-79. https://doi.org/10.1016/j.jcrs.2016.11.033
34. An Y, Kang EK, Kim H, Kang MJ, Byun YS, Joo CK. Accuracy of swept-source optical coherence tomography based biometry for intraocular lens power calculation: A retrospective cross-sectional study. BMC Ophthalmol. 2019; 19: 30. https://doi.org/10.1186/s12886-019-1036-y
35. Arriola-Villalobos P, Almendral-Gómez J, Garzón N, Ruiz-Medrano J, Fernández-Pérez C, Martínez-de-la-Casa JM, et al. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye. 2017; 31(3): 437-442. https://doi.org/10.1038/eye.2016.241
36. Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg. 2016; 42(1): 76-83. https://doi.org/10.1016/j.jcrs.2015.07.039
37. Nemeth G, Modis JrL. Ocular measurements of a sweptsource biometer: Repeatability data and comparison with an optical low-coherence interferometry biometer. J Cataract Refract Surg. 2019; 45(6): 789-797. https://doi.org/10.1016/j.jcrs.2018.12.018
38. Hoffer KJ, Hoffmann PC, Savini G. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. J Cataract Refract Surg. 2016; 42(8): 1165-1172. https://doi.org/10.1016/j.jcrs.2016.07.013
39. Mukhija R, Gupta N. Advances in anterior segment examination. Commun Eye Health. 2019; 32(107): S5-S6.
40. Kanclerz P, Khoramnia R, Wang X. Current developments in corneal topography and tomography. Diagnostics. 2021; 11(8): 1466. https://doi.org/10.3390/diagnostics11081466
41. Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: A review. Clin Exp Ophthalmol. 2018; 46(2): 133-146. https://doi.org/10.1111/ceo.13136
42. Grzybowski A, Kanclerz P. Recent developments in cataract surgery. Current Concepts in Ophthalmology. Springer; 2020: 55-97.
43. Courville CB, Smolek MK, Klyce SD. Contribution of the ocular surface to visual optics. Exp Eye Res. 2004; 78: 417-425. https://doi.org/10.1016/j.exer.2003.10.012
44. Martin R. Cornea and anterior eye assessment with Plaыcido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian J Ophthalmol. 2018; 66(3): 360. https://doi.org/10.4103/ijo.IJO_850_17
45. Cairns G, McGhee CNJ. Orbscan computerized topography: Attributes, applications, and limitations. J Cataract Refract Surg. 2005; 31: 205-220. https://doi.org/10.1016/j.jcrs.2004.09.047
46. Oliveira CM, Ribeiro C, Franco S. Corneal imaging with slitscanning and Scheimpflug imaging techniques. Clin Exp Optom. 2011; 94: 33-42. https://doi.org/10.1111/j.1444-0938.2010.00509.x
47. Swartz T, Marten L, Wang M. Measuring the cornea: The latest developments in corneal topography. Curr Opin Ophthalmol. 2007; 18: 325-333. https://doi.org/10.1097/ICU.0b013e3281ca7121
48. Shammas HJ, Hoffer KJ, Shammas MC. Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg. 2009; 35(2): 330-334. https://doi.org/10.1016/j.jcrs.2008.10.041
49. Xu K, Hao Y, Qi H. Intraocular lens power calculations using a Scheimpflug camera to measure corneal power. Biotech Histochem. 2013; 89(5): 348-354. https://doi.org/10.3109/10520295.2013.867532
50. Saad E, Shammas MC, Shammas HJ. Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery. Am J Ophthalmol. 2013; 156(3): 460-467. https://doi.org/10.1016/j.ajo.2013.04.035
51. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Accuracy of a dual Scheimpflug analyzer and a corneal topography system for intraocular lens power calculation in unoperated eyes. J Cataract Refract Surg. 2011; 37(1): 72-76. https://doi.org/10.1016/j.jcrs.2010.08.036
52. OCULUS Pentacam Pentacam® HR Pentacam® AXL interpretation guide; 3rd ed.
53. Savini G, Hoffer KJ, Barboni P, Balducci N, Schiano-Lomoriello D, Ducoli P. Accuracy of optical biometry combined with Placido disc corneal topography for intraocular lens power calculation. PLoS One. 2017; 12(2): e0172634. https://doi.org/10.1371/journal.pone.0172634
54. Mehravaran S, Asgari S, Bigdeli S, Shahnazi A, Hashemi H. Keratometry with five different techniques: A study of device repeatability and inter-device agreement. Int Ophthalmol. 2014; 34(4): 869-875. https://doi.org/10.1007/s10792-013-9895-3
55. Pan C, Tan W, Hua Y, Lei X. Comprehensive evaluation of total corneal refractive power by ray tracing in predicting corneal power in eyes after small incision lenticule extraction. PLoS One. 2019; 14(6): e0217478. https://doi.org/10.1371/journal.pone.0217478
56. Qian Y, Liu Y, Zhou X, Naidu RK. Comparison of corneal power and astigmatism between simulated keratometry, true net power, and total corneal refractive power before and after SMILE surgery. J Ophthalmol. 2017; 2017: 9659481 https://doi.org/10.1155/2017/9659481
57. Savini G, Hoffer KJ, Schiano Lomoriello D, Ducoli P. Simulated keratometry versus total corneal power by ray tracing. Cornea. 2017; 36(11): 1368-1372. https://doi.org/10.1097/ico.0000000000001343
58. Wang Q, Savini G, Hoffer KJ, Xu Z, Feng Y, Wen D, et al. A comprehensive assessment of the precision and agreement of anterior corneal power measurements obtained using 8 different devices. PLoS One. 2012; 7(9): e45607. https://doi.org/10.1371/journal.pone.0045607
59. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Comparison of methods to measure corneal power for intraocular lens power calculation using a rotating Scheimpflug camera. J Cataract Refract Surg. 2013; 39(4): 598-604. https://doi.org/10.1016/j.jcrs.2012.11.022
60. Wang L, Mahmoud AM, Anderson BL, Koch DD, Roberts CJ. Total corneal power estimation: Ray tracing method versus Gaussian optics formula. Invest Ophthalmol Vis Sci. 2011; 52(3): 1716-1722. https://doi.org/10.1167/iovs.09-4982
61. Saglik A, Celik H, Aksoy M. An analysis of Scheimpflug Holladay-equivalent keratometry readings following corneal collagen cross-linking. Beyoglu Eye J. 2019; 4(2): 62-68. https://doi.org/10.14744/bej.2019.35220
62. Karunaratne N. Comparison of the Pentacam equivalent keratometry reading and IOL Master keratometry measurement in intraocular lens power calculations. Clin Exp Ophthalmol. 2013; 41(9): 825-834. https://doi.org/10.1111/ceo.12124
63. Oh JH, Kim SH, Chuck RS, Park CY. Evaluation of the Pentacam ray tracing method for the measurement of central corneal power after myopic photorefractive keratectomy. Cornea. 2014; 33(3): 261-265. https://doi.org/10.1097/ICO.0000000000000034
64. Hoshikawa R, Kamiya K, Fujimura F, Shoji N. Comparison of conventional keratometry and total keratometry in normal eyes. BioMed Res Int. 2020; 2020: 8075924. https://doi.org/10.1155/2020/8075924