Preview

Acta Biomedica Scientifica

Advanced search

Current ideas on the pathogenesis of osteoporosis in chronic lymphatic leukemia (literature review)

https://doi.org/10.29413/ABS.2024-9.4.12

Abstract

Background. Chronic lymphocytic leukemia (CLL) is the second most common hematological malignancy without a trend towards a decrease in its incidence. 66 % of patients with CLL experience bone fractures as a result of osteoporosis in all age groups, and the detection frequency is no more than 15 %. Insufficient understanding of the osteoporosis pathogenesis in CLL leads to problems in diagnosis, prevention and therapy.

The aim of the study. To analyze modern data on the features of the osteoporosis pathogenesis in chronic lymphocytic leukemia.

Results and discussion. Osteoporosis is formed when osteoresorption prevails over osteosynthesis due to intercellular interactions of bone tissue and the immune system, dysregulation of intracellular signaling pathways RANKL/RANK/OPG, Wnt, FoxO, RUNX2, initiated by cytokines, growth factors, prostaglandins, and hormones. The degree of osteoresorption in CLL is associated with the severity of the clinical course, chemotherapy and hormonal deprivation. The osteoporosis pathogenesis in CLL is considered as part of a complex set of events, including, firstly, the interaction between leukemic cells (overexpression of PTHrP, RANKL) and bone cells (synthesis of growth factors), which forms a vicious circle of osteoresorption and tumor growth. Secondly, pro-inflammatory markers in CLL (tumor necrosis factor α, interleukin (IL) 1β, IL-6, IL-8, IL-11, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, transforming growth factor β, prostaglandin E2) limit osteoblast-induced osteosynthesis and stimulate the expansion of osteoclasts from monocytic suppressor cells of myeloid origin with or without the participation of the RANKL/RANK system. Thirdly, oxidative stress in CLL and impaired efficiency of antioxidant protection with the participation of fibroblast growth factor 23, transcription factor Nrf-2 with activation of JNK, ERK1/2, NF-κB, and also an increase in the RANKL/OPG ratio lead to inhibition of osteoblastogenesis.

Conclusion. Analyzing and systematizing data on the osteoporosis pathogenesis in CLL are instrumental for the development of diagnostic criteria for osteoporosis in chronic lymphocytic leukemia that are much-needed in clinical practice and for the improvement of therapeutic tactics.

About the Authors

M. V. Osikov
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Mikhail V. Osikov – Dr. Sc. (Med.), Professor, Head of the Department of Pathophysiology, South Ural State Medical University; Head of the Scientific Department, Chelyabinsk Regional Clinical Hospital

Vorovskogo str. 64, Chelyabinsk 454092;
Vorovskogo str. 70, Chelyabinsk 454076



E. A. Korobkin
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Egor A. Korobkin – Teaching Assistant at the Department of Pathophysiology, South Ural State Medical University; Hematologist, Chelyabinsk Regional Clinical Hospital

Vorovskogo str. 64, Chelyabinsk 454092;
Vorovskogo str. 70, Chelyabinsk 454076



A. A. Fedosov
Peoples’ Friendship University of Russia
Russian Federation

Aleksey A. Fedosov – Cand. Sc. (Med.), Associate Professor at the Department of Histology, Cytology and Embryology

Miklukho-Maklaya str. 6, Moscow 117198



A. V. Sineglazova
Kazan State Medical University
Russian Federation

Albina V. Sineglazova – Dr. Sc. (Med.), Docent, Head of the Department of Outpatient Therapy and General Medical Practice

Butlerova str. 49, Kazan 420012



References

1. Nikitin EA, Bialik TE, Zaritsky AY, Iseber L, Kaplanov KD, Lopatkina TN, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma. Journal of Modern Oncology. 2020; 22(3): 24-44. (In Russ.). doi: 10.26442/18151434.2020.3.200385

2. Kittai AS, Huang Y, Bhat SA, Paskett ED, Rogers KA, Barrientos JC, et al. Racial and socioeconomic disparities in CLL/SLL: Analysis of SEER data from 2006 to 2019. Blood Adv. 2023; 7(11): 2575-2579. doi: 10.1182/bloodadvances.2022008643

3. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975–2018, National Cancer Institute. 2018. URL: https://seer.cancer.gov/csr/1975_2018 [date of access: 20.04.2021].

4. Kaprin AD, Starinskiy VV, Petrova GV. Malignant neoplasms in Russia in 2018 (morbidity and mortality). Moscow; 2021. (In Russ.).

5. Chiorazzi N, Chen SS, Rai KR. Chronic lymphocytic leukemia. Cold Spring Harb Perspect Med. 2021; 11(2): a035220. doi: 10.1101/cshperspect.a035220

6. Kwok M, Wu CJ. Clonal evolution of high-risk chronic lymphocytic leukemia: A contemporary perspective. Front Oncol. 2021; 11: 790004. doi: 10.3389/fonc.2021.790004

7. Rotbain EC, Gordon MJ, Vainer N, Frederiksen H, Hjalgrim H, Danilov AV, et al. The CLL comorbidity index in a population-based cohort: A tool for clinical care and research. Blood Adv. 2022; 6(8): 2701-2706. doi: 10.1182/bloodadvances.2021005716

8. Tucker DL, Mihailescu L, Riordan R, Rule S. Remineralization of lytic bone disease in a patient with small lymphocytic lymphoma using ibrutinib. Br J Haematol. 2017; 178(1): 153-155. doi: 10.1111/bjh.14118

9. Bacchiarri F, Gozzetti A, Mondanelli N, Lazzi S, Bocchia M. A case of bone lesion in a patient with relapsed chronic lymphocytic leukemia and review of the literature. Clin Case Rep. 2022; 10(4): e05379. doi: 10.1002/ccr3.5379

10. Ruchlemer R, Amit-Kohn M, Tvito A, Sindelovsky I, Zimran A, Raveh-Brawer D. Bone loss and hematological malignancies in adults: A pilot study. Support Care Cancer. 2018; 26(9): 3013-3020. doi: 10.1007/s00520-018-4143-z

11. Petty L, Stephens D, Sharma A. Risk factors for fragility fractures in chronic lymphocytic leukemia. Cureus. 2024; 16(2): e54774. doi: 10.7759/cureus.54774

12. Brander DM, Oeffinger KC, Greiner MA, Dinan MA. Prevalence, screening, treatment, and complications of osteoporosis and osteopenia in Medicare patients with chronic lymphocytic leukemia (CLL). J Clin Oncol. 2020; 38(15): e24050-e24050. doi: 10.1200/JCO.2020.38.15_suppl.e24050

13. Yevstigneyeva LP, Kuznetsova NM, Lesnyak OM. Comparative effectiveness of various educational programs in osteoporosis. Osteoporosis and Bone Diseases. 2015; 18(3): 23-29. (In Russ.). doi: 10.14341/osteo2015323-29

14. Compston JE, McClung MR, LeslieWD. Osteoporosis. Lancet. 2019; 393(10169): 364-376. doi: 10.1016/S0140-6736(18)32112-3

15. Belaya ZhE, Belova KYu, Biryukova EV, Dedov II, Dzeranova LK, Drapkina OM, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021; 24(2): 4-47. (In Russ.). doi: 10.14341/osteo12930

16. Lesnyak OM, Baranova IA, Belova KY, Gladkova EN, Evstigneeva LP, Ershova OB, et al. Osteoporosis in Russian Federation: Epidemiology, socio-medical and economical aspects (review). Traumatologyand Orthopedicsof Russia. 2018; 24(1): 155-168. (In Russ.). doi: 10.21823/2311-2905-2018-24-1-155-168

17. Rosen CJ, Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G. The epidemiology and pathogenesis of osteoporosis. South Dartmouth (MA); 2020.

18. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020; 133(1): 105-117. doi: 10.1093/bmb/ldaa005

19. Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MDC, López-Ruiz E. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci. 2022; 23(16): 9465. doi: 10.3390/ijms23169465

20. Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of osteoclasts: Osteoclast precursor cells. J Bone Metab. 2023; 30(2): 127-140. doi: 10.11005/jbm.2023.30.2.127

21. Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, molecular target and current status on drug development. Curr Med Chem. 2021; 28(8): 1489-1507. doi: 10.2174/092986732766 6200330142432

22. Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: Essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2022; 10(4): 1291-1317. doi: 10.1016/j.gendis.2022.07.011

23. Yudoh K, Sugishita Y, Suzuki-Takahashi Y. Bone development and regeneration 2.0. Int J Mol Sci. 2023; 24(10): 8761. doi: 10.3390/ijms24108761

24. KomoriT.Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci. 2022; 23(10): 5776. doi: 10.3390/ijms23105776

25. Ma X, Su P, Yin C, Lin X, Wang X, Gao Y, et al. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci. 2020; 21(3): 692. doi: 10.3390/ijms21030692

26. Jiang Y, Luo W, Zhou F, Gong P, Xiong Y. The role of FOXO1mediated autophagy in the regulation of bone formation. Cell Cycle. 2023; 22(7): 829-840. doi: 10.1080/15384101.2022.2155443

27. Zhao X, Patil S, Xu F, Lin X, Qian A. Role of biomolecules in osteoclasts and their therapeutic potential for osteoporosis. Biomolecules. 2021; 11(5): 747. doi: 10.3390/biom11050747

28. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: Bone metabolism, the immune system, and beyond. Infl Regen. 2020; 40: 2. doi: 10.1186/s41232-019-0111-3

29. Wang Y, Liu Y, Huang Z, Chen X, Zhang B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov. 2022; 8(1): 252. doi: 10.1038/s41420-022-01042-0

30. Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin – The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne). 2022; 13: 1014853. doi: 10.3389/fendo.2022.1014853

31. Subramaniam R, Vijakumaran U, Shanmuganantha L, Law JX, Alias E, Ng MH. The role and mechanism of MicroRNA 21 in osteogenesis: An update. Int J Mol Sci. 2023; 24(14): 11330. doi: 10.3390/ijms241411330

32. Ma TL, Zhu P, Ke ZR, Chen JX, Hu YH, Xie J. Focusing on OBOC-MΦ Axis and miR-23a to explore the pathogenesis and treatment strategy of osteoporosis. Front Endocrinol (Lausanne). 2022; 13: 891313. doi: 10.3389/fendo.2022.891313

33. Marini C, Bruno S, Fiz F, Campi C, Piva R, Cutrona G, et al. Functional activation of osteoclast commitment in chronic lymphocytic leukaemia: A possible role for RANK/RANKL Pathway. Sci Rep. 2017; 7(1): 14159. doi: 10.1038/s41598-017-12761-1

34. Hamood R, Hamood H, Merhasin I, Keinan-Boker L. Hormone therapy and osteoporosis in breast cancer survivors: Assessment of risk and adherence to screening recommendations. Osteoporos Int. 2019; 30(1): 187-200. doi: 10.1007/s00198-018-4758-4

35. Giannoni P, Marini C, Cutrona G, Matis S, Capra MC, Puglisi F, et al. Chronic lymphocytic leukemia cells impair osteoblastogenesis and promote osteoclastogenesis: Role of TNFα, IL-6 and IL-11 cytokines. Haematologica. 2021; 106(10): 2598-2612. doi: 10.3324/haematol.2019.231456

36. Alankus B, Ecker V, Vahl N, Braun M, Weichert W, MacherGöppinger S, et al. Pathological RANK signaling in B cells drives autoimmunity and chronic lymphocytic leukemia. J Exp Med. 2021; 218(2): e20200517. doi: 10.1084/jem.20200517

37. Kamalakar A, Washam CL, Akel NS, Allen BJ, Williams DK, Swain FL, et al. PTHrP(12-48) modulates the bone marrow microenvironment and suppresses human osteoclast differentiation and lifespan. J Bone Miner Res. 2017; 32(7): 1421-1431. doi: 10.1002/jbmr.3142

38. El-Gazzar A, Högler W. Mechanisms of bone fragility: From osteogenesis imperfecta to secondary osteoporosis. Int J Mol Sci. 2021; 22(2): 625. doi: 10.3390/ijms22020625

39. Sisay M, Mengistu G, Edessa D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: Potential targets for anticancer therapy. Onco Targets Ther. 2017; 10: 3801-3810. doi: 10.2147/OTT.S135867

40. Kitaura H, Marahleh A, Ohori F, Noguchi T, Nara Y, Pramusita A, et al. Role of the interaction of tumor necrosis factor-α and tumor necrosis factor receptors 1 and 2 in bone-related cells. Int J Mol Sci. 2022; 23(3): 1481. doi: 10.3390/ijms23031481

41. Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, et al. Strategies of macrophages to maintain bone homeostasis and promote bone repair: A narrative review. J Funct Biomater. 2022; 14(1): 18. doi: 10.3390/jfb14010018

42. Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett. 2022; 596(5): 567-588. doi: 10.1002/1873-3468.14201

43. Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021; 18(16): 3697-3707. doi: 10.7150/ijms.61080

44. Nazir T, Taha N, Islam A, Rabbi I, Shah PA. The role of pro-infl tory mediator interleukin-32 in osteoclast differentiation.Turk J Pharm Sci. 2023; 20(2): 121-125. doi: 10.4274/tjps.galenos.2022.69922

45. Grüner N, Ortlepp AL, Mattner J. Pivotal role of intestinal microbiota and intraluminal metabolites for the maintenance of gut-bone physiology. Int J Mol Sci. 2023; 24(6): 5161. doi: 10.3390/ijms24065161

46. Yao Z, Getting SJ, Locke IC. RegulationofTNF-inducedosteoclast differentiation. Cells. 2021; 11(1): 132. doi: 10.3390/cells11010132

47. Liao R, Feng Z, Li W, Liu R, Xu X, Yao S, et al. Interleukin-1 induces receptor activator of nuclear factor-κB ligand-independent osteoclast differentiation in RAW264.7 cells. Exp Ther Med. 2021; 21(6): 640. doi: 10.3892/etm.2021.10072

48. Kowalska W, Bojarska-Junak A. Monocytic MDSC as a source of immunosuppressive cytokines in chronic lymphocytic leukemia (CLL) microenvironment. Folia Histochem Cytobiol. 2020; 58(1): 25-36. doi: 10.5603/FHC.a2020.0006

49. Han J, Yang K, An J, Jiang N, Fu S, Tang X. The role of NRF2 in bone metabolism – Friend or foe? Front Endocrinol (Lausanne). 2022; 13: 813057. doi: 10.3389/fendo.2022.813057

50. Egbujor MC, Buttari B, Profumo E, Telkoparan-Akillilar P, Saso L. An overview of NRF2-activating compounds bearing α,βunsaturated moiety and their antioxidant effects. Int J Mol Sci. 2022; 23(15): 8466. doi: 10.3390/ijms23158466

51. Priddy C, Li J. The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health. Bone Rep. 2021; 15: 101149. doi: 10.1016/j.bonr.2021.101149

52. Ru JY, Wang YF. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020; 11(10): 846. doi: 10.1038/s41419-020-03059-8

53. Gao Y, Patil S, Jia J. The development of molecular biology of osteoporosis. Int J Mol Sci. 2021; 22(15): 8182. doi: 10.3390/ijms22158182

54. Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, et al. Oxidative stress and inflammation in osteoporosis: Molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci. 2023; 24(4): 3772. doi: 10.3390/ijms24043772

55. Zheng S. Protective effect of Polygonatum sibiricum Polysaccharide on D-galactose-induced aging rat’s model. Sci Rep. 2020; 10(1): 2246. doi: 10.1038/s41598-020-59055-7

56. Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: Novel preventive and therapeutic approaches. Antioxidants (Basel). 2023; 12(2): 373. doi: 10.3390/antiox12020373

57. D’Arena G, Vitale C, Perbellini O, Coscia M, La Rocca F, Ruggieri V, et al. Prognostic relevance of oxidative stress measurement in chronic lymphocytic leukaemia. Eur J Haematol. 2017; 99(4): 306-314. doi: 10.1111/ejh.12918

58. D’Arena G, Seneca E, Migliaccio I, De Feo V, Giudice A, La Rocca F, et al. Oxidative stress in chronic lymphocytic leukemia: Still a matter of debate. Leuk Lymphoma. 2019; 60(4): 867-875. doi: 10.1080/10428194.2018.1509317

59. Czegle I, Gray AL, Wang M, Liu Y, Wang J, WapplerGuzzetta EA. Mitochondria and their relationship with common genetic abnormalities in hematologic malignancies. Life (Basel). 2021; 11(12): 1351. doi: 10.3390/life11121351


Review

For citations:


Osikov M.V., Korobkin E.A., Fedosov A.A., Sineglazova A.V. Current ideas on the pathogenesis of osteoporosis in chronic lymphatic leukemia (literature review). Acta Biomedica Scientifica. 2024;9(4):100-107. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.12

Views: 527


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)