Gut microbiota biodiversity indices as markers of hyperandrogenemia in women of reproductive age
https://doi.org/10.29413/ABS.2024-9.4.2
Abstract
Introduction. Previously, it was shown that the “classic” phenotypes of polycystic ovarian syndrome (PCOS) are associated with significant decrease in gut microbiota alpha diversity as compared with healthy women.
The aim of the study. To establish cut-off points for alpha diversity indices, significant in polycystic ovarian syndrome with hyperandrogenism.
Material and methods. The manuscript presents a sub-study of Eastern Siberia PCOS Epidemiology and Phenotype Study, conducted in Eastern Siberia (Russia) from 2016 to 2019. All participants (175 women of reproductive age: 26 women with PCOS (according to Rotterdam criteria (2003)) and hyperandrogenemia (increased levels of total testosterone (TT) and/or free androgenindex(FAI), and/ordehydroepiandrosterone sulphate (DHEAS)), 149 – without hyperandrogenemia) were recruited during the annual employment medical assessment. Methods included a questionnaire survey, anthropometry and modified Ferriman – Gallwey score, gynecological examination, pelvic ultrasound, and blood serum tests for TT, DHEAS, sex hormone-binding globulin, FAI, prolactin, thyroid-stimulating hormone, and 17-hydroxyprogesterone. Five indices of alpha diversity (amplicon sequencing variant, Shannon index, Simpson index, Chao index, and abundance-based coverage Index) were estimated for the gut microbiota using amplicon metasequencing. Statistical analysis included ROC-analysis for development of cut-off points for the indices, associated with hyperandrogenism in women of reproductive age with PCOS.
Results. According to results of ROC-analysis, the greatest sensitivity with moderate specificity, with a high area under the curve was established for the Shannon and Simpson indices with cut-off points classifying women with or without hyperandrogenemia – 5.84 and 0.97, respectively.
Conclusions. The developed criteria for assessing alpha diversity using cut-off points for the most significant indices can be useful for monitoring the results of different therapeutic interventions (prebiotics, probiotics, etc.) in hyperandrogenic phenotypes of PCOS.
Keywords
About the Authors
I. A. IgumnovRussian Federation
Ilia A. Igumnov – Junior Research Officer at the Laboratory of Gynecological Endocrinology
Timirayzeva str. 16, Irkutsk 664003
N. L. Belkova
Russian Federation
Natalia L. Belkova – Cand. Sc. (Biol.), Docent, Leading Research Officer at the Laboratory of Microbiome and Microecology
Timirayzeva str. 16, Irkutsk 664003
A. V. Atalyan
Russian Federation
Alina V. Atalyan – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Socially Significant Problems of Reproductology
Timirayzeva str. 16, Irkutsk 664003
E. S. Klimenko
Russian Federation
Elizaveta S. Klimenko – Junior Research Officer at the Functional Group of Genomic Research and Bioinformatics Analysis
Timirayzeva str. 16, Irkutsk 664003
L. F. Sholokhov
Russian Federation
Leonid F. Sholokhov – Dr. Sc. (Med.), Professor, Head of the Laboratory of Physiology and Pathology of Endocrine System
Timirayzeva str. 16, Irkutsk 664003
L. V. Belenkaia
Russian Federation
Liliia V. Belenkaia – Cand. Sc. (Med.), Senior Research Officer at the Laboratory of Physiology and Pathology of Endocrine System
Timirayzeva str. 16, Irkutsk 664003
Ya. M. Samarina
Russian Federation
Yana M. Samarina– Laboratory Assistant at the Laboratory of Gynecological Endocrinology
Timirayzeva str. 16, Irkutsk 664003
I. N. Danusevich
Russian Federation
Irina N. Danusevich – Dr. Sc. (Med.), Leading Research Officer at the Laboratory of Gynecological Endocrinology
Timirayzeva str. 16, Irkutsk 664003
L. M. Lazareva
Russian Federation
Lyudmila M. Lazareva – Cand. Sc. (Med.), Research Officer at the Laboratory of Gynecological Endocrinology
Timirayzeva str. 16, Irkutsk 664003
Ia. G. Nadeliaeva
Russian Federation
Iana G. Nadeliaeva – Cand. Sc. (Med.), Research Officer at the Laboratory of Gynecological Endocrinology
Timirayzeva str. 16, Irkutsk 664003
L. V. Suturina
Russian Federation
Larisa V. Suturina – Dr. Sc. (Med.), Professor, Chief Research Officer, Head of the Department of Reproductive Health
Timirayzeva str. 16, Irkutsk 664003
References
1. Zore T, Joshi N, Lizneva D, Azziz R. Polycystic ovarian syndrome: Long-term health consequences. Semin Reprod Med. 2017; 35(3): 271-281. doi: 10.1055/s-0037-1603096
2. Suturina L. The epidemiology of polycystic ovary syndrome. In: Kovacs GT, Fauser B, Legro RS (eds). Polycystic ovary syndrome; 3rd ed. Cambridge, UK: Cambridge University Press; 2022: 21-28. doi: 10.1017/9781108989831.003
3. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLoS One. 2017; 12(1): e0168390. doi: 10.1371/journal.pone.0168390
4. Yang Y, Zhou W, Wu S, Tang WL, Wang ZW, Zhou ZY, et al. Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome. Endocrinology. 2021; 162(10): bqab118. doi: 10.1210/endocr/bqab118
5. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiotabileacid-interleukin-22 axisorchestrates polycystic ovary syndrome. Nat Med. 2019; 25(8): 1225-1233. doi: 10.1038/s41591-019-0562-8
6. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017; 8: 324. doi: 10.3389/fmicb.2017.00324
7. Torres P, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018; 103(4): 1502-1511. doi: 10.1210/jc.2017-02153
8. Insenser M, Murri M, del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF. Gut microbiota and the polycystic ovary syndrome: Infl e of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018; 103(7): 2552-2562. doi: 10.1210/jc.2017-02799
9. He F, Li Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: Findings from a normal-weight population. J Ovarian Res. 2021; 14(1): 50. doi: 10.1186/s13048021-00799-9
10. Zhou L, Ni Z, ChengW,Yu J, Sun S, Zhai D, et al. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect. 2020; 9(1): 63-73. doi: 10.1530/EC-19-0522
11. Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, et al. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes. 2021; 7(1): 60. doi: 10.1038/s41522-021-00231-6
12. Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, et al. Prediction of gut microbial community structure and function in polycystic ovary syndrome with high low-density lipoprotein cholesterol. Front Cell Infect Microbiol. 2021; 11: 665406. doi: 10.3389/fcimb.2021.665406
13. Suturina L, Belkova N, Igumnov I, Lazareva L, Danusevich I, Nadeliaeva I, et al. Polycystic ovary syndrome and gut microbiota: Phenotype matters. Life (Basel). 2022; 13(1): 7. doi: 10.3390/life13010007
14. Suturina L, Lizneva D, Lazareva L, Danusevich I, Nadeliaeva I, Belenkaya L, et al. Ethnicity and the prevalence of polycystic ovary syndrome: The Eastern Siberia PCOS Epidemiology and Phenotype Study. Clin Endocrinol Metab. 2024; 18: dgae424. doi: 10.1210/clinem/dgae424
15. Teede H, Misso M, Costello M, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2018; 89(3): 251-268. doi: 10.1111/cen.13795
16. Suturina L, Lizneva D, Atalyan A, Lazareva L, Belskikh A, Bairova T, et al. Establishing normative values to determine the prevalence of biochemical biochemical hyperandrogenism in premenopausal women of different ethnicities from Eastern Siberia. Diagnostics (Basel). 2022; 13(1): 33. doi: 10.3390/diagnostics13010033
17. NIH HMP Working Group; Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009; 19(12): 2317-2323. doi: 10.1101/gr.096651.109
18. Bolyen E, Rideout J, Dillon M, Bokulich NA, Abnet CC, AlGhalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37: 852-857. doi: 10.1038/s41587-019-0209-9
19. Atalyan VV, Kolesnikova LI, Kolesnikov SI, Grjibovski AM, Suturina LV. Research electronic data capture (REDCap) for building and managing databases for population-based biomedical studies. Human Ecology. 2019; 2: 52-59. (In Russ.). doi: 10.33396/17280869-2019-2-52-59
20. The R project for statistical computing. URL: https://www.rproject.org [date of access: 19.09.2022].
21. Mammadova G, Ozkul C, Isikhan SY, Acikgoz A, Yildiz BO. Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. Eur J Clin Invest. 2021; 51(4): e13417. doi: 10.1111/eci.13417
22. Hassan S, Kaakinen M, Draisma H, Zudina L, Ganie MA, Rashid A, et al. Bifidobacterium is enriched in gut microbiome of Kashmiri women with polycystic ovary syndrome. Genes (Basel). 2022; 13(2): 379. doi: 10.3390/genes13020379
23. Torres PJ, Ho BS, Arroyo P, Sau L, Chen A, Kelley ST, et al. Exposure to a healthy gut microbiome protects against reproductive and metabolic dysregulation in a PCOS mouse model. Endocrinology. 2019; 160(5): 1193-1204. doi: 10.1210/en.2019-00050
24. Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013; 4(4): 325-339. doi: 10.4161/gmic.25487
25. Ojo O, Wang X, Ojo OO, Brooke J, Jiang Y, Dong Q, et al. The effect of prebiotics and oral anti-diabetic agents on gut microbiome in patients with type 2 diabetes: A systematic review and network meta-analysis of randomised controlled trials. Nutrients. 2022; 14(23): 5139. doi: 10.3390/nu14235139
26. Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, et al. Gut microbiome and polycystic ovary syndrome: interplay of associated microbial-metabolite pathways and therapeutic strategies. Reprod Sci. 2024; 31(6): 1508-1520. doi: 10.1007/s43032-023-01450-2
27. Wang X, Xu T, Liu R, Wu G, Gu L, Zhang Y, et al. High-fi diet or combined with acarbose alleviates heterogeneous phenotypes of polycystic ovary syndrome by regulating gut microbiota. Front Endocrinol(Lausanne). 2022; 12: 806331. doi: 10.3389/fendo.2021.806331
28. Jobira B, Frank D, Pyle L, Silveira LJ, Kelsey MM, GarciaReyesY, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab. 2020; 105(6): e2134-e2144. doi: 10.1210/clinem/dgz263
29. Tayachew B, Vanden Brink H, Garcia-Reyes Y, Rahat H, D’Alessandro A, Frank DN, et al. Combined oral contraceptive treatment does not alter the gut microbiome but affects amino acid metabolism in sera of obese girls with polycystic ovary syndrome. Front Physiol. 2022; 13: 887077. doi: 10.3389/fphys.2022.887077
30. Guo F, Jing L, Xu Y, Zhang K, Li Y, Sun N, et al. Gut microbiota and inflammatory factor characteristics in major depressive disorder patients with anorexia. BMC Psychiatry. 2024; 24(1): 334. doi: 10.1186/s12888-024-05778-0
31. Guo C, Zhang P, Li J, Zhou C, Yang Z, Zhang Y, et al. The characteristics of intestinal microbiota in patients with chronic schistosomiasis japonica-induced liver fi osis by 16S rRNA gene sequence. Front Microbiol. 2023; 14: 1276404. doi: 10.3389/fmicb.2023.1276404
Review
For citations:
Igumnov I.A., Belkova N.L., Atalyan A.V., Klimenko E.S., Sholokhov L.F., Belenkaia L.V., Samarina Ya.M., Danusevich I.N., Lazareva L.M., Nadeliaeva I.G., Suturina L.V. Gut microbiota biodiversity indices as markers of hyperandrogenemia in women of reproductive age. Acta Biomedica Scientifica. 2024;9(4):12-18. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.2