Preview

Acta Biomedica Scientifica

Advanced search

Gut microbiota biodiversity indices as markers of hyperandrogenemia in women of reproductive age

https://doi.org/10.29413/ABS.2024-9.4.2

Abstract

Introduction. Previously, it was shown that the “classic” phenotypes of polycystic ovarian syndrome (PCOS) are associated with significant decrease in gut microbiota alpha diversity as compared with healthy women.

The aim of the study. To establish cut-off points for alpha diversity indices, significant in polycystic ovarian syndrome with hyperandrogenism.

Material and methods. The manuscript presents a sub-study of Eastern Siberia PCOS Epidemiology and Phenotype Study, conducted in Eastern Siberia (Russia) from 2016 to 2019. All participants (175 women of reproductive age: 26 women with PCOS (according to Rotterdam criteria (2003)) and hyperandrogenemia (increased levels of total testosterone (TT) and/or free androgenindex(FAI), and/ordehydroepiandrosterone sulphate (DHEAS)), 149 – without hyperandrogenemia) were recruited during the annual employment medical assessment. Methods included a questionnaire survey, anthropometry and modified Ferriman – Gallwey score, gynecological examination, pelvic ultrasound, and blood serum tests for TT, DHEAS, sex hormone-binding globulin, FAI, prolactin, thyroid-stimulating hormone, and 17-hydroxyprogesterone. Five indices of alpha diversity (amplicon sequencing variant, Shannon index, Simpson index, Chao index, and abundance-based coverage Index) were estimated for the gut microbiota using amplicon metasequencing. Statistical analysis included ROC-analysis for development of cut-off points for the indices, associated with hyperandrogenism in women of reproductive age with PCOS.

Results. According to results of ROC-analysis, the greatest sensitivity with moderate specificity, with a high area under the curve was established for the Shannon and Simpson indices with cut-off points classifying women with or without hyperandrogenemia – 5.84 and 0.97, respectively.

Conclusions. The developed criteria for assessing alpha diversity using cut-off points for the most significant indices can be useful for monitoring the results of different therapeutic interventions (prebiotics, probiotics, etc.) in hyperandrogenic phenotypes of PCOS.

About the Authors

I. A. Igumnov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Ilia A. Igumnov – Junior Research Officer at the Laboratory of Gynecological Endocrinology

Timirayzeva str. 16, Irkutsk 664003



N. L. Belkova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Natalia L. Belkova – Cand. Sc. (Biol.), Docent, Leading Research Officer at the Laboratory of Microbiome and Microecology

Timirayzeva str. 16, Irkutsk 664003



A. V. Atalyan
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Alina V. Atalyan – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Socially Significant Problems of Reproductology

Timirayzeva str. 16, Irkutsk 664003



E. S. Klimenko
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Elizaveta S. Klimenko – Junior Research Officer at the Functional Group of Genomic Research and Bioinformatics Analysis

Timirayzeva str. 16, Irkutsk 664003



L. F. Sholokhov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Leonid F. Sholokhov – Dr. Sc. (Med.), Professor, Head of the Laboratory of Physiology and Pathology of Endocrine System

Timirayzeva str. 16, Irkutsk 664003



L. V. Belenkaia
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Liliia V. Belenkaia – Cand. Sc. (Med.), Senior Research Officer at the Laboratory of Physiology and Pathology of Endocrine System

Timirayzeva str. 16, Irkutsk 664003



Ya. M. Samarina
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Yana M. Samarina– Laboratory Assistant at the Laboratory of Gynecological Endocrinology

Timirayzeva str. 16, Irkutsk 664003



I. N. Danusevich
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Irina N. Danusevich – Dr. Sc. (Med.), Leading Research Officer at the Laboratory of Gynecological Endocrinology

Timirayzeva str. 16, Irkutsk 664003



L. M. Lazareva
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Lyudmila M. Lazareva – Cand. Sc. (Med.), Research Officer at the Laboratory of Gynecological Endocrinology

Timirayzeva str. 16, Irkutsk 664003



Ia. G. Nadeliaeva
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Iana G. Nadeliaeva – Cand. Sc. (Med.), Research Officer at the Laboratory of Gynecological Endocrinology

Timirayzeva str. 16, Irkutsk 664003



L. V. Suturina
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Larisa V. Suturina – Dr. Sc. (Med.), Professor, Chief Research Officer, Head of the Department of Reproductive Health

Timirayzeva str. 16, Irkutsk 664003



References

1. Zore T, Joshi N, Lizneva D, Azziz R. Polycystic ovarian syndrome: Long-term health consequences. Semin Reprod Med. 2017; 35(3): 271-281. doi: 10.1055/s-0037-1603096

2. Suturina L. The epidemiology of polycystic ovary syndrome. In: Kovacs GT, Fauser B, Legro RS (eds). Polycystic ovary syndrome; 3rd ed. Cambridge, UK: Cambridge University Press; 2022: 21-28. doi: 10.1017/9781108989831.003

3. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLoS One. 2017; 12(1): e0168390. doi: 10.1371/journal.pone.0168390

4. Yang Y, Zhou W, Wu S, Tang WL, Wang ZW, Zhou ZY, et al. Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome. Endocrinology. 2021; 162(10): bqab118. doi: 10.1210/endocr/bqab118

5. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiotabileacid-interleukin-22 axisorchestrates polycystic ovary syndrome. Nat Med. 2019; 25(8): 1225-1233. doi: 10.1038/s41591-019-0562-8

6. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017; 8: 324. doi: 10.3389/fmicb.2017.00324

7. Torres P, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018; 103(4): 1502-1511. doi: 10.1210/jc.2017-02153

8. Insenser M, Murri M, del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF. Gut microbiota and the polycystic ovary syndrome: Infl e of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018; 103(7): 2552-2562. doi: 10.1210/jc.2017-02799

9. He F, Li Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: Findings from a normal-weight population. J Ovarian Res. 2021; 14(1): 50. doi: 10.1186/s13048021-00799-9

10. Zhou L, Ni Z, ChengW,Yu J, Sun S, Zhai D, et al. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect. 2020; 9(1): 63-73. doi: 10.1530/EC-19-0522

11. Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, et al. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes. 2021; 7(1): 60. doi: 10.1038/s41522-021-00231-6

12. Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, et al. Prediction of gut microbial community structure and function in polycystic ovary syndrome with high low-density lipoprotein cholesterol. Front Cell Infect Microbiol. 2021; 11: 665406. doi: 10.3389/fcimb.2021.665406

13. Suturina L, Belkova N, Igumnov I, Lazareva L, Danusevich I, Nadeliaeva I, et al. Polycystic ovary syndrome and gut microbiota: Phenotype matters. Life (Basel). 2022; 13(1): 7. doi: 10.3390/life13010007

14. Suturina L, Lizneva D, Lazareva L, Danusevich I, Nadeliaeva I, Belenkaya L, et al. Ethnicity and the prevalence of polycystic ovary syndrome: The Eastern Siberia PCOS Epidemiology and Phenotype Study. Clin Endocrinol Metab. 2024; 18: dgae424. doi: 10.1210/clinem/dgae424

15. Teede H, Misso M, Costello M, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2018; 89(3): 251-268. doi: 10.1111/cen.13795

16. Suturina L, Lizneva D, Atalyan A, Lazareva L, Belskikh A, Bairova T, et al. Establishing normative values to determine the prevalence of biochemical biochemical hyperandrogenism in premenopausal women of different ethnicities from Eastern Siberia. Diagnostics (Basel). 2022; 13(1): 33. doi: 10.3390/diagnostics13010033

17. NIH HMP Working Group; Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009; 19(12): 2317-2323. doi: 10.1101/gr.096651.109

18. Bolyen E, Rideout J, Dillon M, Bokulich NA, Abnet CC, AlGhalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37: 852-857. doi: 10.1038/s41587-019-0209-9

19. Atalyan VV, Kolesnikova LI, Kolesnikov SI, Grjibovski AM, Suturina LV. Research electronic data capture (REDCap) for building and managing databases for population-based biomedical studies. Human Ecology. 2019; 2: 52-59. (In Russ.). doi: 10.33396/17280869-2019-2-52-59

20. The R project for statistical computing. URL: https://www.rproject.org [date of access: 19.09.2022].

21. Mammadova G, Ozkul C, Isikhan SY, Acikgoz A, Yildiz BO. Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. Eur J Clin Invest. 2021; 51(4): e13417. doi: 10.1111/eci.13417

22. Hassan S, Kaakinen M, Draisma H, Zudina L, Ganie MA, Rashid A, et al. Bifidobacterium is enriched in gut microbiome of Kashmiri women with polycystic ovary syndrome. Genes (Basel). 2022; 13(2): 379. doi: 10.3390/genes13020379

23. Torres PJ, Ho BS, Arroyo P, Sau L, Chen A, Kelley ST, et al. Exposure to a healthy gut microbiome protects against reproductive and metabolic dysregulation in a PCOS mouse model. Endocrinology. 2019; 160(5): 1193-1204. doi: 10.1210/en.2019-00050

24. Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013; 4(4): 325-339. doi: 10.4161/gmic.25487

25. Ojo O, Wang X, Ojo OO, Brooke J, Jiang Y, Dong Q, et al. The effect of prebiotics and oral anti-diabetic agents on gut microbiome in patients with type 2 diabetes: A systematic review and network meta-analysis of randomised controlled trials. Nutrients. 2022; 14(23): 5139. doi: 10.3390/nu14235139

26. Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, et al. Gut microbiome and polycystic ovary syndrome: interplay of associated microbial-metabolite pathways and therapeutic strategies. Reprod Sci. 2024; 31(6): 1508-1520. doi: 10.1007/s43032-023-01450-2

27. Wang X, Xu T, Liu R, Wu G, Gu L, Zhang Y, et al. High-fi diet or combined with acarbose alleviates heterogeneous phenotypes of polycystic ovary syndrome by regulating gut microbiota. Front Endocrinol(Lausanne). 2022; 12: 806331. doi: 10.3389/fendo.2021.806331

28. Jobira B, Frank D, Pyle L, Silveira LJ, Kelsey MM, GarciaReyesY, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab. 2020; 105(6): e2134-e2144. doi: 10.1210/clinem/dgz263

29. Tayachew B, Vanden Brink H, Garcia-Reyes Y, Rahat H, D’Alessandro A, Frank DN, et al. Combined oral contraceptive treatment does not alter the gut microbiome but affects amino acid metabolism in sera of obese girls with polycystic ovary syndrome. Front Physiol. 2022; 13: 887077. doi: 10.3389/fphys.2022.887077

30. Guo F, Jing L, Xu Y, Zhang K, Li Y, Sun N, et al. Gut microbiota and inflammatory factor characteristics in major depressive disorder patients with anorexia. BMC Psychiatry. 2024; 24(1): 334. doi: 10.1186/s12888-024-05778-0

31. Guo C, Zhang P, Li J, Zhou C, Yang Z, Zhang Y, et al. The characteristics of intestinal microbiota in patients with chronic schistosomiasis japonica-induced liver fi osis by 16S rRNA gene sequence. Front Microbiol. 2023; 14: 1276404. doi: 10.3389/fmicb.2023.1276404


Review

For citations:


Igumnov I.A., Belkova N.L., Atalyan A.V., Klimenko E.S., Sholokhov L.F., Belenkaia L.V., Samarina Ya.M., Danusevich I.N., Lazareva L.M., Nadeliaeva I.G., Suturina L.V. Gut microbiota biodiversity indices as markers of hyperandrogenemia in women of reproductive age. Acta Biomedica Scientifica. 2024;9(4):12-18. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.2

Views: 470


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)