Лиганд-ассоциированная активация рецепторов витамина D и потенциальные точки приложения её эффектов в морфогенезе иммунного воспаления: обзор литературы
https://doi.org/10.29413/ABS.2024-9.3.7
Аннотация
Согласно последним данным, витамин D относят к веществам с гормональной активностью, который, помимо классических, имеет «неклассические» эффекты, обусловленные наличием сложной взаимосвязи между витамином D и эффекторными клетками иммунной системы. Данная взаимосвязь обусловлена экспрессией рецептора витамина D (VDR, vitamin D receptor) на иммунных клетках, который кодируется соответствующим геном VDR. Рецептор витамина D специфически связывает активную форму витамина D (1,25(OH)2D3). В результате образуется сложный комплекс D3-VDR, который опосредует эффекты витамина D путём образования внутриклеточных сигнальных путей, трансформирующих активность определённых таргетных генов. При этом до конца не ясно, каким образом витамин D реализует свои эффекты на клеточном и рецепторном уровнях. По данным литературы, исследования последних десятилетий выявили значимую роль витамина D и рецепторов иммунных контрольных точек (PD-1 (programmed cell death), PD-L (PD ligand), CTLA (cytotoxic T lymphocyte associated protein)) в аутоиммунных заболеваниях. В этом обзоре излагаются возможные механизмы взаимосвязи данных путей. Более глубокое понимание межклеточных взаимосвязей опосредованных лиганд-ассоциированной активацией рецепторов витамина D, комплекса D3-VDR и рецепторов иммунных контрольных точек (PD-1, PD-L, CTLA) в воспалении может стать основой для разработки новых стратегий диагностики, прогноза и лечения различных заболеваний.
Ключевые слова
Об авторах
Э. Т. АблякимовРоссия
Аблякимов Эльмар Тофикович – аспирант, ассистент кафедры патологической анатомии с секционным курсом
295000, г. Симферополь, б-р Ленина, 5-7
М. А. Кривенцов
Россия
Кривенцов Максим Андреевич – доктор медицинских наук, заведующий кафедрой патологической анатомии с секционным курсом
295000, г. Симферополь, б-р Ленина, 5-7
Список литературы
1. Громова О.А., Торшин И.Ю. Витамин D. Смена парадигмы; 2-е изд., перераб. и доп.. М.: ГЭОТАР-Медиа; 2021.
2. Снопов С.А. Механизмы действия витамина D на иммунную систему. Медицинская иммунология. 2014; 16(6): 499-530. doi: 10.15789/1563-0625-2014-6-499-530
3. Borba VZ, Vieira JG, Kasamatsu T, Radominski SC, Sato EI, Lazaretti-Castro M. Vitamin D deficiency in patients with active systemic lupus erythematosus. Osteoporos Int. 2009; 20(3): 427-433. doi: 10.1007/s00198-008-0676-1
4. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: Molecular mechanisms and therapeutic potential. Front Immunol. 2017; 7: 697. doi: 10.3389/fimmu.2016.00697
5. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007; 27(1): 111-122. doi: 10.1016/j.immuni.2007.05.016
6. Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med. 2015; 212(10): 1603-1621. doi: 10.1084/jem.20141030
7. Chun RF, Peercy BE, Orwoll ES, Nielson CM, Adams JS, Hewison M. Vitamin D and DBP: The free hormone hypothesis revisited. J Steroid Biochem Mol Biol. 2014; 144(Pt A): 132-137. doi: 10.1016/j.jsbmb.2013.09.012
8. Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, et al. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol. 1997; 11(8): 1165-1179. doi: 10.1210/mend.11.8.9951
9. Trochoutsou AI, Kloukina V, Samitas K, Xanthou G. Vitamin D in the immune system: Genomic and non-genomic actions. Mini Rev Med Chem. 2015; 15(11): 953-963. doi: 10.2174/13895575156 66150519110830
10. Pérez E, Bourguet W, Gronemeyer H, de Lera AR. Modulation of RXR function through ligand design. Biochim Biophys Acta. 2012; 1821: 57-69. doi: 10.1016/j.bbalip.2011.04.003
11. Hu X, Funder JW. The evolution of mineralocorticoid receptors. Mol Endocrinol. 2006; 20(7): 1471-1478. doi: 10.1210/me.2005-0247
12. Hart PH, Gorman S, Finlay-Jones JJ. Modulation of the immune system by UV radiation: More than just the effects of vitamin D? Nat Rev Immunol. 2011; 11(9): 584-596. doi: 10.1038/nri3045
13. Bikle DD, Oda Y, Tu CL, Jiang Y. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer. J Steroid Biochem Mol Biol. 2015; 148: 47-51. doi: 10.1016/j.jsbmb.2014.10.017
14. Doroudi M, Schwartz Z, Boyan BD. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca(2+)/calmodulindependent protein kinase II. J Steroid Biochem Mol Biol. 2015; 147: 81-84. doi: 10.1016/j.jsbmb.2014.11.002
15. Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, et al. Nuclear receptors: A historical perspective. Methods Mol Biol. 2019; 1966: 1-5. doi: 10.1007/978-1-4939-9195-2_1
16. Shri Preethi M, Premkumar K, Asha Devi S. Molecular docking study on vitamin D supplements to understand their interaction with VDR-RXRα heterodimer and VDRE of TAGAP gene. J Biomol Struct Dyn. 2022; 24: 1-10. doi: 10.1080/07391102.2022.2114939
17. Wierzbicka J, Piotrowska A, Żmijewski MA. The renaissance of vitamin D. Acta Biochim Pol. 2014, 61(4): 679-686.
18. Lin L, Zhang L, Li C, Gai Z, Li Y. Vitamin D and vitamin D receptor: New insights in the treatment of hypertension. Curr Protein Pept Sci. 2019; 20(10): 984-995. doi: 10.2174/1389203720 666190807130504
19. Adams JS. Update in vitamin D. J Clin Endocrinol Metab. 2010; 95: 471-478. doi: 10.1210/jc.2009-1773
20. Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin Dcathelicidin axis: At the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020; 20(2): e12. doi: 10.4110/in.2020.20.e12
21. Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin-2 gene by vitamin D3: Direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995; 15(10): 5789-5799. doi: 10.1128/MCB.15.10.5789
22. Xin Y, Wang H, Wang Y, Xu W, Teng G, Han F, et al. CCL20 mediates the anti-tumor effect of vitamin D3 in p38MAPK/NF-κB signaling in colitis-associated carcinogenesis. Eur J Cancer Prev. 2021; 30(1): 76-83. doi: 10.1097/CEJ.0000000000000582
23. Van Belle TL, Gysemans C, Mathieu C. Vitamin D in autoimmune, infectious and allergic diseases: A vital player? Best Pract Res Clin Endocrinol Metab. 2011; (25): 617-632. doi: 10.1016/j.beem.2011.04.009
24. Vieira VM, Hart JE, Webster TF, Weinberg J, Puett R, Laden F, et al. Association between residences in U.S. northern latitudes and rheumatoid arthritis: A spatial analysis of the Nurses’ Health Study. Environ Health Perspect. 2010; 118(7): 957-961. doi: 10.1289/ehp.0901861
25. Terrier B, Derian N, Schoindre Y, Chaara W, Geri G, Zahr N, et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res Ther. 2012; 14(5): R221. doi: 10.1186/ar4060
26. Prietl B, Theiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013; 5(7): 2502-2521. doi: 10.3390/nu5072502
27. L Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: Antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020; 5(1): e10405. doi: 10.1002/jbm4.10405
28. Wang T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. 1,25-dihy-droxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004; 173: 2909-2912. doi: 10.4049/jimmunol.173.5.2909
29. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311: 1770-1773. doi: 10.1126/science.1123933
30. Baeke F, Korf H, Overbergh L, Van Etten E, Verstuyf A, Gysemans C, et al. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J Steroid Biochem Mol Biol. 2010; 121(1-2): 221-227. doi: 10.1016/j.jsbmb.2010.03.037
31. Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003; (170): 5382-5390. doi: 10.4049/jimmunol.170.11.5382
32. Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. Sci World J. 2011; (11): 2391-2402. doi: 10.1100/2011/213962
33. Van Etten E, Stoffels K, Gysemans C, Mathieu C, Overbergh L. Regulation of vitamin D homeostasis: Implications for the immune system. Nutr Rev. 2008; 66: 125-134. doi: 10.1111/j.1753-4887.2008.00096.x
34. Kissa M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol. 2013; 132(2): 264-286. doi: 10.1016/j. jaci.2013.05.044
35. Wafa N, Lamia Y-D, Mourad A. Vitamin D3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. Int Immunopharmacol. 2016; 30: 94-101. doi: 10.1016/j.intimp.2015.11.033
36. Eagar TN, Tompkins SM, Miller SD. Helper T-cell subsets and control of the inflammatory response. Clinical Immunology. Mosby, London, UK; 2001: 16.1-16.12.
37. Prietl B, Theiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013; 5(7): 2502-2521. doi: 10.3390/nu5072502
38. Lopez DV, Al-Jaberi FAH, Woetmann A, Ødum N, Bonefeld CM, Kongsbak-Wismann M, et al. Macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses. Front Immunol. 2021; 12: 722806. doi: 10.3389/fimmu.2021.722806
39. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol. 2010; (108): 111-165. doi: 10.1016/B978-0-12-380995-7.00004-5
40. Kim S, Park GY, Park JS, Park J, Hong H, Lee Y. Regulation of positive and negative selection and TCR signaling during thymic T cell development by capicua. Elife. 2021; 10: e71769. doi: 10.7554/eLife.71769
41. Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux F, et al. Repositioning TH cell polarization from single cytokines to complex help. Nat Immunol. 2021; 22: 1210-1217. doi: 10.1038/s41590-021-01009-w
42. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011; 34(4): 566-578. doi: 10.1016/j.immuni.2011.03.018
43. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10 secreting type-1 regulatory T cells in rodents and humans. Immunol Rev. 2006; 212: 28-50. doi: 10.1111/j.0105-2896.2006.00420.x
44. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, et al. 1,25-dihydxroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol. 2009; 183(9): 5458-5467. doi: 10.4049/jimmunol.0803217
45. Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022; 40(2): 201-218.e9. doi: 10.1016/j.ccell.2022.01.001
46. Almanan MA, Raynor J, Chougnet C, Salamonis N, Amarachintha S, Steinbrecher K, et al. Type 1 regulatory T cells (Tr1) homeostasis and function in aging. J Immunol. 2017; 198(Suppl 1): 154.10.
47. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001; 167(1): 4974-4980. doi: 10.4049/jimmunol.167.9.4974
48. Chauss D, Freiwald T, McGregor R, Yan B, Wang L, Nova-Lamperti E, et al. Autocrine vitamin D signaling switches off proinflammatory programs of TH1 cells. Nat Immunol. 2022; 23(1): 62-74. doi: 10.1038/s41590-021-01080-3
49. Topilski I, Flaishon L, Naveh Y, Harmelin A, Levo Y, Shachar I. The anti-inflammatory effects of 1,25-dihydroxyvitamin D3 on Th2 cell in vivo are due in part to the control of integrin-mediated T lymphocyte homing. Eur J Immunol. 2004; 34(4): 1068-1074. doi: 10.1002/eji.200324532
50. Fisher SA, Rahimzadeh M, Brierley C, Gration B, Doree C, Kimber CE, et al. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLoS One. 2019; 14(9): e0222313. doi: 10.1371/journal.pone.0222313
51. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human cell differentiation. J Immunol. 2007; 179(3): 1634-1647. doi: 10.4049/jimmunol.179.3.1634
52. Muller K, Bendtzen K. Inhibition of human T lymphocyte proliferation and cytokine production by 1,25-dihydroxyvitamin D3. Differential effects on CD45RA+ and CD45R0+ cells. Autoimmunity. 1992; 14(1): 37-43.
53. Cai H, Liu G, Zhong J, Zheng K, Xiao H, Li C, et al. Immune checkpoints in viral infections. Viruses. 2020; 12(9): 1051. doi: 10.3390/v12091051
54. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013; 121(5): 734-744. doi: 10.1182/blood-2012-10-3855
55. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26(1): 677-704. doi: 10.1146/annurev.immunol.26.021607.090331
56. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005; 23: 515-548. doi: 10.1146/annurev. immunol.23.021704.115611
57. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEKdependent pathway. Blood. 2007; 110(1): 296-304. doi: 10.1182/blood-2006-10-051482
58. Yokosuka T, Takamatsu M, Kobayashi-Imanishiet W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatorymicroclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012; 209(6): 1201-1217. doi: 10.1084/jem.20112741
59. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, et al. Ipilimumabmonotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncology. 2010; 11(2): 155-164. doi: 10.1016/s1470-2045(09)70334-1
60. Olsson C, Riebeck K, Dohlsten M, Michaelsson E. CTLA-4 ligation suppresses CD28-induced NF-kB and AP-1 activity in mouse T cell blasts. J Biol Chem. 1999; 274(20): 14400-14405. doi: 10.1074/jbc.274.20.14400
61. Zaulkffali AS, MdRazip NN, Syed Alwi SS, AbdJalil A, AbdMutalib MS, Gopalsamy B, et al. Vitamins D and E stimulate the PI3K-AKT signalling pathway in insulin-resistant SK-N-SH neuronal cells. Nutrients. 2019; 11(10): 2525. doi: 10.3390/nu11102525
62. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007; 8(3): 239-245. doi: 10.1038/ni1443
63. Cao L, Che X, Qiu X, Li Z, Yang B, Wang S, et al. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Mana Res. 2019; 11: 6125-6138. doi: 10.2147/CMAR.S199832
64. Selenko-Gebauer N, Majdic O, Szekeres A, Höfler G, Guthann E, Korthäuer U, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol. 2003; 17(7): 3637-3644. doi: 10.4049/jimmunol.170.7.3637
65. Aygun H. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn Schmiedebergs Arch Pharmacol. 2022; 395(4): 487-494. doi: 10.1007/s00210-022-02210-w
66. Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol. 2022; 22: 751-764. doi: 10.1038/s41577-022-00707-2
67. Spector WG. The granulomatous inflammatory exudate. Int Rev Exp Pathol. 1969; 8: 1-55.
68. Adams DO. The structure of mononuclear phagocytes differentiating in vivo: I. Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am J Pathol. 1974; 76: 17-48.
69. Dandekar RC, Kingaonkar AV, Dhabekar GS. Role of macrophages in malignancy. Ann Maxillofac Surg. 2011; 1(2): 150-154. doi: 10.4103/2231-0746.92782
70. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumourassociated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545(7655): 495-499. doi: 10.1038/nature22396
71. McNally AK, Anderson JM. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: Dependence on material surface properties. J Biomed Mater Res A. 2015; 103: 1380-1390. doi: 10.1002/jbm.a.35280
72. Van den Bossche J, Bogaert P, van Hengel J, Guerin CJ, Berx G, et al. Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamineinduced E-cadherin/catenin complexes. Blood. 2009; 114: 4664-4674. doi: 10.1182/blood-2009-05-221598
73. Pagán AJ, Ramakrishnan L. The formation and function of granulomas. Annu Rev Immunol. 2018; 36: 639-665. doi: 10.1146/annurev-immunol-032712-100022
74. Mayne C, Spanier J, Relland L, Williams CB, Hayes CE. 1,25-dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol. 2011; 41: 822-832. doi: 10.1002/eji.201040632
75. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 2010; 62: 340-50. doi: 10.1002/art.27271
76. Muscettola M, Grasso G. Effect of 1,25-dihydroxyvitamin D3 on interferon gamma production in vitro. Immunol Lett. 1988; 17: 121-124. doi: 10.1016/0165-2478(88)90079-x
77. Ohta M, Okabe T, Ozawa K, Urabe A, Takaku F. In vitro formation of macrophage-epithelioid cells and multinucleated giant cells by 1 alpha,25-dihydroxy vitamin D3 from human circulating monocytes. Ann N Y Acad Sci. 1986; 465: 211-220. doi: 10.1111/j.1749-6632.1986.tb18497.x
78. Penna G, Adorini L. 1α,25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000; 164: 2405-2411. doi: 10.4049/jimmunol.164.5.2405
Рецензия
Для цитирования:
Аблякимов Э.Т., Кривенцов М.А. Лиганд-ассоциированная активация рецепторов витамина D и потенциальные точки приложения её эффектов в морфогенезе иммунного воспаления: обзор литературы. Acta Biomedica Scientifica. 2024;9(3):79-89. https://doi.org/10.29413/ABS.2024-9.3.7
For citation:
Ablyakimov E.T., Kriventsov M.A. Ligand-associated activation of vitamin D receptors and potential points of application of its effects in the morphogenesis of immune inflammation: Literature review. Acta Biomedica Scientifica. 2024;9(3):79-89. (In Russ.) https://doi.org/10.29413/ABS.2024-9.3.7