Glucokinase: evolution, regulatory properties, role in the pathogenesis of type 2 diabetes mellitus
https://doi.org/10.29413/ABS.2025-10.3.3
Abstract
The review examines the evolution, structural and functional organization and regulatory properties of glucokinase, which is predominantly expressed in β-cells of the pancreas and in liver hepatocytes. Considerable attention is paid to the possible role of glucokinase in the etiology and pathogenesis of type 2 diabetes mellitus (T2DM), and the development of approaches to normalize insulin secretion, glucose homeostasis, carbohydrate and lipid metabolism using regulators of glucokinase activity. Data are presented on the influence of variants in the glucokinase gene and glucokinase regulatory protein in the development of disorders of the insulin-secreting function of the pancreas. Thus, inactivating mutations in the glucokinase gene cause T2DM, while activating mutations lead to congenital hyperinsulinism. Data are discussed that L-arginine, allosterically interacting with glucokinase, stimulates insulin secretion and inhibits the degradation of the enzyme, protecting it from ubiquitination. It is concluded that glucokinase and functionally related proteins are promising targets when developing approaches to normalize the sensitivity of pancreatic β-cells to glucose, restore insulin secretion and glucose homeostasis in T2DM and other metabolic disorders. Data for this review were identified by searching MEDLINE, PubMed, and references of articles published in English and Russian between 1966 and 2024.
About the Authors
L. A. KuznetsovaRussian Federation
Lyudmila A. Kuznetsova – Dr. Sc. (Biol.), Leading Research Officer at the laboratory of molecular endocrinology and neurochemistry
pr. Thorez 44, Saint-Petersburg 194223
N. E. Basova
Russian Federation
Nataliia E. Basova – Cand. Sc. (Biol.), Senior Research Officer at the laboratory of molecular endocrinology and neurochemistry
pr. Thorez 44, Saint-Petersburg 194223
A. O. Shpakov
Russian Federation
Alexander O. Shpakov – Dr. Sc. (Biol.), Head of the laboratory of molecular endocrinology and neurochemistry, deputy director
pr. Thorez 44, Saint-Petersburg 194223
References
1. Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 2014; 289: 12189–94. doi: 10.1074/jbc.R114.557314
2. Wilson JE. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J. Exp. Biol. 2003; 206(Pt12): 2049–2057. doi: 10.1242/jeb.00241
3. Cardenas ML, Cornish-Bowden A, Ureta T. Evolution and regulatory role of the hexo-kinases. Biochim. Biophys. Acta. 1998; 1401(3): 242-64. doi: 10.1016/s0167-4889(97)00150-x
4. Irwin DM, Tan H. Evolution of glucose utilization: glucokinase and glucokinase regulator protein. Mol. Phylogenet. Evol. 2014; 70: 195-203. doi: 10.1016/j.ympev.2013.09.016
5. Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. Cell Insight. 2023; 2(1): 100077. doi: 10.1016/j.cellin.2023.100077
6. Pertseva MN. On some properties of muscle hexokinase in ontogenesis of hen. Journal of Evolutional Biochemistry and Physiology. 1966; 2(5): 419-422. (In Russ.).
7. Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer’s “Sweet Tooth”: Role of Hexokinases in Metabolic Reprogramming. Life (Basel). 2023; 13(4): 946. doi: 10.3390/life13040946
8. Griffin LD, Gelb BD, Wheeler D, Davison V, McCabe ER. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics. 1991; 11(4): 1014-1024. doi: 10.1016/0888-7543(91)90027-c
9. Tsai HJ. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves if type I and type III isozymes. Arch. Biochem. Biophys. 1999; 369(1): 149-156. doi: 10.1006/abbi.19999.1326
10. Choi JM, Seo MH, Kyeong HH, Kim E, Kim HS. Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase. Proc. Natl. Acad. Sci. USA. 2013; 110(25): 10171-10176. doi: 10.1073/pnas.1300457110
11. Zapater JL, Lednovich KR, Khan MW, Pusec CM, Layden BT. Hexokinase domain-containing protein-1 in metabolic diseases and beyond. Trends in Endocrinology and Metabolism. 2022; 33: 72–84. doi: 0.1016/j.tem.2021.10006
12. Ciscato F, Filadi R, Masgras I, Pizzi M, Marin O, Damiano N, et al. Hexokinase 2 displacement from mitochondria-associated membranes prompts Ca2+-dependent death of cancer cells. EMBO Reports. 2020; 21(7): e49117. doi: 10.15252/embr.201948117
13. Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: Too much of a good thing? Trends Endocrinol metabolism. 2023; 34(2): 119–30. doi: 10.1016/j.tem.2022.12.007
14. Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 2019; 10: 148. doi: 10.3389/fphys.2019.00148
15. Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, et al. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol. 2024; 16; 25(1): 98. doi: 10.1186/s13059-024-03238-2
16. Rubtsov PM, Igudin EL, Tiulpakov A.N. Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs. Mol Biol (Mosk). 2015; 49(4): 555-560. doi: 10.7868/S002689841504014X
17. Ren Y, Li L, Li W, Huang Y, Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J. Enzyme Inhib. Med. Chem. 2022; 37(1): 606–615. doi: 10.1080/14756366.2021.2025362
18. Park JM, Kim TH, Jo SH, Kim MY, Ahn YH. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity. Sci Rep. 2015; 5: 17395. doi: 10.1038/srep17395
19. Jin L, Guo T, Li Z, Lei Z, Li H, Mao Y, et al. Role of Glucokinase in the subcellular localization of glucokinase regulatory protein. Int. J. Mol. Sci. 2015; 16(4): 7377-7393. doi: 10.3390/ijms16047377
20. Agius L. Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr. 2016; 17; 36: 389-415. doi: 10.1146/annurev-nutr-071715-051145
21. Paliwal A, Paliwal V, Jain S, Paliwal S, Sharma S. Current insight on the role of glucokinase and glucokinase regulatory protein in diabetes. Mini Rev Med Chem. 2024; 24(7): 674-688. doi: 10.2174/13895575236662308231519
22. Kaushik A, Kaushik M. Recent updates on glucokinase activators and glucokinase regulatory protein disrupters for the treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev. 2019; 15(3): 205-212. doi: 10.2174/1573399814666180724100749
23. Wang ZY, Jin L, Tan H, Irwin DM. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for Glucokinase Regulatory Protein (GCKR). PLoS One. 2013; 8(4): e60896. doi: 10.1371/journal.pone.0060896
24. Veiga-da-Cunha M, Sokolova T, Opperdoes F, Van Schaftingen E. Evolution of vertebrate glucokinase regulatory protein from a bacterial N-acetylmuramate 6-phosphate etherase. Biochem. J. 2009; 423: 323–332. doi: 10.1042/BJ20090986
25. Marfori M, Mynott A, Ellis JJ. Mehdi AM, Saunders NF, Curmi PM, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta. 2011; 1813: 1562-1577. doi: 10.1016/j.bbamcr.2010.10.013
26. Ford BE, Chachra SS, Rodgers K, Moonira T, Al-Oanzi ZH, Anstee QM, et al. The gckr-P446l gene variant predisposes to raised blood cholesterol and lower blood glucose in the P446l mouse-a model for gckr rs1260326. Mol. Metab. 2023; 72: 101722. doi: 10.1016/j.molmet.2023.101722
27. Zhang Z, Ji G, Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front Endocrinol. (Lausanne). 2023; 14: 1247611. doi: 10.3389/fendo.2023.1247611
28. Barosa C, Ribeiro RT, Andrade R, Raposo JF, Jones JG. Effects of Meal Fructose/Glucose composition on postprandial glucose appearance and hepatic glycogen synthesis in healthy subjects. J. Clin. Med. 2021; 10(4): 596. doi: 10.3390/jcm10040596
29. Smith EVL, Dyson RM, Weth FR, Berry MJ, Gray C. Maternal fructose intake, programmed mitochondrial function and predisposition to adult disease. Int. J. Mol. Sci. 2022; 23(20): 12215. doi: 10.3390/ijms232012215
30. Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch. Biochem. Biophys. 2019; 663: 199-213. doi: 10.1016/j.abb.2019.01.011
31. Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat. Rev. Endocrinol. 2022; 18(2): 111-128. doi: 10.1038/s41574-021-00583-1
32. Sternisha SM, Liu P, Marshall AG, Miller BG. Mechanistic Origins of Enzyme Activation in human glucokinase variants associated with Congenital Hyperinsulinism. Biochemistry. 2018; 57(10): 1632-1639. doi: 10.1021/acs.biochem.8b00022
33. Seckinger KM, Rao VP, Snell NE, Mancini AE, Markwardt ML, Rizzo MA. Nitric Oxide Activates β-Cell Glucokinase by Promoting Formation of the “Glucose-Activated” State. Biochemistry. 2018; 57(34): 5136–5144. doi: 10.1021/acs.biochem.8b00333
34. Markwardt ML, Seckinger KM, Rizzo MA. β-Regulation of glucokinase by intracellular calcium levels in pancreatic β-Cells. J. Biol. Chem. 2016; 291: 3000-3009. doi: 10.1074/jbc.M115.692160
35. Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI J. 2020; 19: 1227-1245. doi: 10.17179/excli2020-2711
36. Bahadoran Z, Mirmiran P, Ghasemi A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab. 2020; 31: 118-130. doi: 10.1016/j.tem.2019.10.001
37. Lajoix AD, Reggio H, Chardes T, Peraldi-Roux S, Tribillac F, Roye M, et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes. 2001; 50: 1311-1323. doi: 10.2337/diabetes.50.6.1311
38. Rizzo MA, Piston DW. Regulation of β-cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol. 2003; 161: 243–248. doi: 10.1083/jcb.200301063
39. Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, et al. Recent developments in islet biology: a review with patient perspectives. Can J Diabetes. 2023; 47(2): 207-221. doi: 10.1016/j.jcjd.2022.11.003
40. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015; 95: 513-548. doi: 10.1152/physrev.00013.2014
41. Takeda Y. Theoretical investigations into the quantitative mechanisms underlying the regulation of [cAMP]i, membrane excitability and [Ca(2+)]i during GLP-1 Stimulation in Pancreatic β Cells. Yakugaku Zasshi. 2016; 136(3): 467-471. doi: 10.1248/yakushi.15-00246-2
42. Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia. 2021; 64(12): 2687-2700. doi: 10.1007/s00125-021-05553-w
43. Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S, et al. Sugar-lowering drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Review of Classical and New Compounds: Part-I. Pharmaceuticals. 2019; 12(4): 152. doi: 10.3390/ph12040152
44. Vivot K, Pasquier A, Goginashvili A, Ricci R. Breaking Bad and Breaking Good: Beta-Cell Autophagy Pathways in Diabetes. j. mol. biol. 2020; 432(5): 1494-1513. doi: 10.1016/j.jmb.2019.07.030
45. Timper K, Donath MY. Diabetes mellitus Type 2 – The new face of an old lady. Swiss Med. Wkly. 2012; 142: w13635. doi: 10.4414/smw.2012.13635
46. Retnakaran R, Pu J, Emery A, Harris SB, Reichert SM, Gerstein HC, et al. Determinants of sustained stabilization of beta-cell function following short-term insulin therapy in type 2 diabetes. Nat. Commun. 2023; 14: 4514. doi: 10.1038/s41467-023-40287-w
47. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021; 22: 142–158. doi: 10.1038/s41580-020-00317-7
48. Hou J, Li Z, Zhong W, Hao Q, Lei L, Wang L, et al. Temporal transcriptomic and proteomic landscapes of deteriorating pancreatic islets in type 2 diabetic rats. Diabetes. 2017; 66: 2188-2200. doi: 10.2337/db16-1305
49. Moede T, Leibiger B, Sanchez PV, Dare E, Kohler M, Muhandiramlage TP, et al. Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Sci. Rep. 2020; 10: 20145. doi: 10.1038/s41598-020-76863-z
50. Bahl V, May CL, Perez A, Glaser B, Kaestner KH. Genetic activation of α-cell glucokinase in mice causes enhanced glucose-suppression of glucagon secretion during normal and diabetic states. Mol. Metab. 2021; 49101193. doi: 10.1016/j.molmet.2021.101193
51. Haddad D, Dsouza VS, Al-Mulla F, Al Madhoun A. New-Generation Glucokinase Activators: Potential Game-Changers in Type 2 Diabetes Treatment. Int J Mol Sci. 2024; 25(1): 571. doi: 10.3390/ijms25010571
52. Hussain S, Richardson E, Ma Y, Holton C, Backer ID, Buckley N, et al. Glucokinase activity in the arcuate nucleus regulates glucose intake. J. Clin. Invest. 2015; 125: 337-349. doi: 10.1172/JCI77172
53. Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes. Metab. 2021; 23: 2199–2206. doi: 10.1111/dom.14459
54. Liu J, Fu H, Kang F, Ning G, Ni Q, Wang W, et al. β-Cell glucokinase expression was increased in type 2 diabetes subjects with better glycemic control. J. Diabetes. 2023; 15: 409-418. doi: 10.1111/1753-0407.13380
55. Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J. Diabetes Investig. 2015; 6: 124–132. doi: 10.1111/jdi.12294
56. Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, et al. Phenotypic characterization of congenital hyperinsulinism due to novel activating glucokinase mutations. Diabetes. 2023; 72(12): 1809-1819. doi: 10.2337/db23-0465
57. Sarabu R, Berthel SJ, Kester RF, Tilley JW. Novel glucokinase activators: a patent review (2008– 2010). Expert Opin. Ther. Pat. 2011; 21: 13-33. doi: 10.1517/13543776.2011.542413
58. Xu J, Lin S, Myers RW, Addona G, Berger JP, Campbell B, et al. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg Med Chem Lett. 2017; 27(9): 2069-2073. doi: 10.1016/j.bmcl.2016.10.085
59. Li W, Zhang X, Sun Y, Liu Z. Recent clinical advances of glucokinase activators in the treatment of diabetes mellitus type 2. Pharmazie. 2020; 75(6): 230-235. doi: 10.1691/ph.2020.0409
60. Bloomgarden Z. Glucokinase and the potential of glucokinase activation in type 2 diabetes. J Diabetes. 2019; 11(8): 626-627. doi: 10.1111/1753-0407.12937
61. Whitticar NV, Nunemaker CS. Reducing glucokinase activity to enhance insulin secretion: a counterintuitive theory to preserve cellular function and glucose homeostasis. Front Endocrinol. 2020; 11: 378. doi: 10.3389/fendo.2020.00378
62. Xu H, Sheng L, Chen W, Yuan F, Yang M, Li H, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of novel glucokinase activator HMS5552: Results from a first-in-human single ascending dose study. Drug Des. Dev. Ther. 2016; 10: 1619–1626. doi: 10.2147/DDDT.S105021
63. Yu Y, Yang X, Tong K, Yin S, Hu G, Zhang F, et al. Efficacy and safety of dorzagliatin for type 2 diabetes mellitus: A meta-analysis and trial sequential analysis. Front. Cardiovasc. Med. 2022; 9: 1041044. doi: 10.3389/fcvm.2022.1041044
64. Zhu D, Zhang Y, Chen L. 182-OR: A novel dual-acting glucokinase activator (GKA) dorzagliatin (HMS5552) achieved primary efficacy endpoint with good safety profiles in T2DM patients after 24 weeks of treatment in a phase III monotherapy trial. Diabetes. 2020; 69(Suppl. S1): 182-OR. doi: 10.2337/db20-182-OR
65. Zhu D, Li X, Ma J, Zeng J, Gan S, Dong X, et al. Dorzagliatin in drug-naive patients with type 2 diabetes: A randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 2022; 28: 965–973. doi: 10.1038/s41591-022-01802-6
66. Syed YY. Dorzagliatin: First Approval. Drugs. 2022; 82: 1745–1750. doi: 10.1007/s40265-022-01813-0
67. Satin LS, Butler PC, Ha J, Sherman AS. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med. 2015; 42: 61-77. doi: 10.1016/j.mam.2015.01.003
68. Cho J, Horikawa Y, Enya M, Takeda J, Imai Y, Handa H, et al. Arginine prevents cereblon-mediated ubiquitination of glucokinase and stimulates glucose-6-phosphate production in pancreatic β-cells. Commun Biol. 2020; 3: 497. doi: 10.1038/s42003-020-01226-3
69. Cho J, Miyagawa A, Yamaguchi K, Abe W, Tsugawa Y, Yamamura H, et al. UDP-Glucose: A cereblon-dependent glucokinase protein degrader. Int. J. Mol. Sci. 2022; 23: 9094. doi: 10.3390/ijms23169094
70. Yuan C, Zhang X, He Q, Li J, Lu J, Zou X. L-arginine stimulates CAT-1-mediated arginine uptake and regulation of inducible nitric oxide synthase for the growth of chick intestinal epithelial cells. Mol Cell Biochem. 2015; 399(1-2): 229-36. doi: 10.1007/s11010-014-2249-2
71. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Dis. 2022; 21: 181–200. doi: 10.1038/s41573-021-00371-6
Supplementary files
Review
For citations:
Kuznetsova L.A., Basova N.E., Shpakov A.O. Glucokinase: evolution, regulatory properties, role in the pathogenesis of type 2 diabetes mellitus. Acta Biomedica Scientifica. 2025;10(3):22-36. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.3