Preview

Acta Biomedica Scientifica

Advanced search

Glucokinase: evolution, regulatory properties, role in the pathogenesis of type 2 diabetes mellitus

https://doi.org/10.29413/ABS.2025-10.3.3

Abstract

The review examines the evolution, structural and functional organization and regulatory properties of glucokinase, which is predominantly expressed in β-cells of the pancreas and in liver hepatocytes. Considerable attention is paid to the possible role of glucokinase in the etiology and pathogenesis of type 2 diabetes mellitus (T2DM), and the development of approaches to normalize insulin secretion, glucose homeostasis, carbohydrate and lipid metabolism using regulators of glucokinase activity. Data are presented on the influence of variants in the glucokinase gene and glucokinase regulatory protein in the development of disorders of the insulin-secreting function of the pancreas. Thus, inactivating mutations in the glucokinase gene cause T2DM, while activating mutations lead to congenital hyperinsulinism. Data are discussed that L-arginine, allosterically interacting with glucokinase, stimulates insulin secretion and inhibits the degradation of the enzyme, protecting it from ubiquitination. It is concluded that glucokinase and functionally related proteins are promising targets when developing approaches to normalize the sensitivity of pancreatic β-cells to glucose, restore insulin secretion and glucose homeostasis in T2DM and other metabolic disorders. Data for this review were identified by searching MEDLINE, PubMed, and references of articles published in English and Russian between 1966 and 2024.

About the Authors

L. A. Kuznetsova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Lyudmila A. Kuznetsova – Dr. Sc. (Biol.), Leading Research Officer at the laboratory of molecular endocrinology and neurochemistry 

pr. Thorez 44, Saint-Petersburg 194223



N. E. Basova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Nataliia E. Basova – Cand. Sc. (Biol.), Senior Research Officer at the laboratory of molecular endocrinology and neurochemistry 

pr. Thorez 44, Saint-Petersburg 194223



A. O. Shpakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Alexander O. Shpakov – Dr. Sc. (Biol.), Head of the laboratory of molecular endocrinology and neurochemistry, deputy director 

pr. Thorez 44, Saint-Petersburg 194223



References

1. Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 2014; 289: 12189–94. doi: 10.1074/jbc.R114.557314

2. Wilson JE. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J. Exp. Biol. 2003; 206(Pt12): 2049–2057. doi: 10.1242/jeb.00241

3. Cardenas ML, Cornish-Bowden A, Ureta T. Evolution and regulatory role of the hexo-kinases. Biochim. Biophys. Acta. 1998; 1401(3): 242-64. doi: 10.1016/s0167-4889(97)00150-x

4. Irwin DM, Tan H. Evolution of glucose utilization: glucokinase and glucokinase regulator protein. Mol. Phylogenet. Evol. 2014; 70: 195-203. doi: 10.1016/j.ympev.2013.09.016

5. Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. Cell Insight. 2023; 2(1): 100077. doi: 10.1016/j.cellin.2023.100077

6. Pertseva MN. On some properties of muscle hexokinase in ontogenesis of hen. Journal of Evolutional Biochemistry and Physiology. 1966; 2(5): 419-422. (In Russ.).

7. Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer’s “Sweet Tooth”: Role of Hexokinases in Metabolic Reprogramming. Life (Basel). 2023; 13(4): 946. doi: 10.3390/life13040946

8. Griffin LD, Gelb BD, Wheeler D, Davison V, McCabe ER. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics. 1991; 11(4): 1014-1024. doi: 10.1016/0888-7543(91)90027-c

9. Tsai HJ. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves if type I and type III isozymes. Arch. Biochem. Biophys. 1999; 369(1): 149-156. doi: 10.1006/abbi.19999.1326

10. Choi JM, Seo MH, Kyeong HH, Kim E, Kim HS. Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase. Proc. Natl. Acad. Sci. USA. 2013; 110(25): 10171-10176. doi: 10.1073/pnas.1300457110

11. Zapater JL, Lednovich KR, Khan MW, Pusec CM, Layden BT. Hexokinase domain-containing protein-1 in metabolic diseases and beyond. Trends in Endocrinology and Metabolism. 2022; 33: 72–84. doi: 0.1016/j.tem.2021.10006

12. Ciscato F, Filadi R, Masgras I, Pizzi M, Marin O, Damiano N, et al. Hexokinase 2 displacement from mitochondria-associated membranes prompts Ca2+-dependent death of cancer cells. EMBO Reports. 2020; 21(7): e49117. doi: 10.15252/embr.201948117

13. Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: Too much of a good thing? Trends Endocrinol metabolism. 2023; 34(2): 119–30. doi: 10.1016/j.tem.2022.12.007

14. Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 2019; 10: 148. doi: 10.3389/fphys.2019.00148

15. Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, et al. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol. 2024; 16; 25(1): 98. doi: 10.1186/s13059-024-03238-2

16. Rubtsov PM, Igudin EL, Tiulpakov A.N. Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs. Mol Biol (Mosk). 2015; 49(4): 555-560. doi: 10.7868/S002689841504014X

17. Ren Y, Li L, Li W, Huang Y, Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J. Enzyme Inhib. Med. Chem. 2022; 37(1): 606–615. doi: 10.1080/14756366.2021.2025362

18. Park JM, Kim TH, Jo SH, Kim MY, Ahn YH. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity. Sci Rep. 2015; 5: 17395. doi: 10.1038/srep17395

19. Jin L, Guo T, Li Z, Lei Z, Li H, Mao Y, et al. Role of Glucokinase in the subcellular localization of glucokinase regulatory protein. Int. J. Mol. Sci. 2015; 16(4): 7377-7393. doi: 10.3390/ijms16047377

20. Agius L. Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr. 2016; 17; 36: 389-415. doi: 10.1146/annurev-nutr-071715-051145

21. Paliwal A, Paliwal V, Jain S, Paliwal S, Sharma S. Current insight on the role of glucokinase and glucokinase regulatory protein in diabetes. Mini Rev Med Chem. 2024; 24(7): 674-688. doi: 10.2174/13895575236662308231519

22. Kaushik A, Kaushik M. Recent updates on glucokinase activators and glucokinase regulatory protein disrupters for the treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev. 2019; 15(3): 205-212. doi: 10.2174/1573399814666180724100749

23. Wang ZY, Jin L, Tan H, Irwin DM. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for Glucokinase Regulatory Protein (GCKR). PLoS One. 2013; 8(4): e60896. doi: 10.1371/journal.pone.0060896

24. Veiga-da-Cunha M, Sokolova T, Opperdoes F, Van Schaftingen E. Evolution of vertebrate glucokinase regulatory protein from a bacterial N-acetylmuramate 6-phosphate etherase. Biochem. J. 2009; 423: 323–332. doi: 10.1042/BJ20090986

25. Marfori M, Mynott A, Ellis JJ. Mehdi AM, Saunders NF, Curmi PM, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta. 2011; 1813: 1562-1577. doi: 10.1016/j.bbamcr.2010.10.013

26. Ford BE, Chachra SS, Rodgers K, Moonira T, Al-Oanzi ZH, Anstee QM, et al. The gckr-P446l gene variant predisposes to raised blood cholesterol and lower blood glucose in the P446l mouse-a model for gckr rs1260326. Mol. Metab. 2023; 72: 101722. doi: 10.1016/j.molmet.2023.101722

27. Zhang Z, Ji G, Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front Endocrinol. (Lausanne). 2023; 14: 1247611. doi: 10.3389/fendo.2023.1247611

28. Barosa C, Ribeiro RT, Andrade R, Raposo JF, Jones JG. Effects of Meal Fructose/Glucose composition on postprandial glucose appearance and hepatic glycogen synthesis in healthy subjects. J. Clin. Med. 2021; 10(4): 596. doi: 10.3390/jcm10040596

29. Smith EVL, Dyson RM, Weth FR, Berry MJ, Gray C. Maternal fructose intake, programmed mitochondrial function and predisposition to adult disease. Int. J. Mol. Sci. 2022; 23(20): 12215. doi: 10.3390/ijms232012215

30. Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch. Biochem. Biophys. 2019; 663: 199-213. doi: 10.1016/j.abb.2019.01.011

31. Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat. Rev. Endocrinol. 2022; 18(2): 111-128. doi: 10.1038/s41574-021-00583-1

32. Sternisha SM, Liu P, Marshall AG, Miller BG. Mechanistic Origins of Enzyme Activation in human glucokinase variants associated with Congenital Hyperinsulinism. Biochemistry. 2018; 57(10): 1632-1639. doi: 10.1021/acs.biochem.8b00022

33. Seckinger KM, Rao VP, Snell NE, Mancini AE, Markwardt ML, Rizzo MA. Nitric Oxide Activates β-Cell Glucokinase by Promoting Formation of the “Glucose-Activated” State. Biochemistry. 2018; 57(34): 5136–5144. doi: 10.1021/acs.biochem.8b00333

34. Markwardt ML, Seckinger KM, Rizzo MA. β-Regulation of glucokinase by intracellular calcium levels in pancreatic β-Cells. J. Biol. Chem. 2016; 291: 3000-3009. doi: 10.1074/jbc.M115.692160

35. Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI J. 2020; 19: 1227-1245. doi: 10.17179/excli2020-2711

36. Bahadoran Z, Mirmiran P, Ghasemi A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab. 2020; 31: 118-130. doi: 10.1016/j.tem.2019.10.001

37. Lajoix AD, Reggio H, Chardes T, Peraldi-Roux S, Tribillac F, Roye M, et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes. 2001; 50: 1311-1323. doi: 10.2337/diabetes.50.6.1311

38. Rizzo MA, Piston DW. Regulation of β-cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol. 2003; 161: 243–248. doi: 10.1083/jcb.200301063

39. Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, et al. Recent developments in islet biology: a review with patient perspectives. Can J Diabetes. 2023; 47(2): 207-221. doi: 10.1016/j.jcjd.2022.11.003

40. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015; 95: 513-548. doi: 10.1152/physrev.00013.2014

41. Takeda Y. Theoretical investigations into the quantitative mechanisms underlying the regulation of [cAMP]i, membrane excitability and [Ca(2+)]i during GLP-1 Stimulation in Pancreatic β Cells. Yakugaku Zasshi. 2016; 136(3): 467-471. doi: 10.1248/yakushi.15-00246-2

42. Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia. 2021; 64(12): 2687-2700. doi: 10.1007/s00125-021-05553-w

43. Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S, et al. Sugar-lowering drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Review of Classical and New Compounds: Part-I. Pharmaceuticals. 2019; 12(4): 152. doi: 10.3390/ph12040152

44. Vivot K, Pasquier A, Goginashvili A, Ricci R. Breaking Bad and Breaking Good: Beta-Cell Autophagy Pathways in Diabetes. j. mol. biol. 2020; 432(5): 1494-1513. doi: 10.1016/j.jmb.2019.07.030

45. Timper K, Donath MY. Diabetes mellitus Type 2 – The new face of an old lady. Swiss Med. Wkly. 2012; 142: w13635. doi: 10.4414/smw.2012.13635

46. Retnakaran R, Pu J, Emery A, Harris SB, Reichert SM, Gerstein HC, et al. Determinants of sustained stabilization of beta-cell function following short-term insulin therapy in type 2 diabetes. Nat. Commun. 2023; 14: 4514. doi: 10.1038/s41467-023-40287-w

47. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021; 22: 142–158. doi: 10.1038/s41580-020-00317-7

48. Hou J, Li Z, Zhong W, Hao Q, Lei L, Wang L, et al. Temporal transcriptomic and proteomic landscapes of deteriorating pancreatic islets in type 2 diabetic rats. Diabetes. 2017; 66: 2188-2200. doi: 10.2337/db16-1305

49. Moede T, Leibiger B, Sanchez PV, Dare E, Kohler M, Muhandiramlage TP, et al. Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Sci. Rep. 2020; 10: 20145. doi: 10.1038/s41598-020-76863-z

50. Bahl V, May CL, Perez A, Glaser B, Kaestner KH. Genetic activation of α-cell glucokinase in mice causes enhanced glucose-suppression of glucagon secretion during normal and diabetic states. Mol. Metab. 2021; 49101193. doi: 10.1016/j.molmet.2021.101193

51. Haddad D, Dsouza VS, Al-Mulla F, Al Madhoun A. New-Generation Glucokinase Activators: Potential Game-Changers in Type 2 Diabetes Treatment. Int J Mol Sci. 2024; 25(1): 571. doi: 10.3390/ijms25010571

52. Hussain S, Richardson E, Ma Y, Holton C, Backer ID, Buckley N, et al. Glucokinase activity in the arcuate nucleus regulates glucose intake. J. Clin. Invest. 2015; 125: 337-349. doi: 10.1172/JCI77172

53. Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes. Metab. 2021; 23: 2199–2206. doi: 10.1111/dom.14459

54. Liu J, Fu H, Kang F, Ning G, Ni Q, Wang W, et al. β-Cell glucokinase expression was increased in type 2 diabetes subjects with better glycemic control. J. Diabetes. 2023; 15: 409-418. doi: 10.1111/1753-0407.13380

55. Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J. Diabetes Investig. 2015; 6: 124–132. doi: 10.1111/jdi.12294

56. Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, et al. Phenotypic characterization of congenital hyperinsulinism due to novel activating glucokinase mutations. Diabetes. 2023; 72(12): 1809-1819. doi: 10.2337/db23-0465

57. Sarabu R, Berthel SJ, Kester RF, Tilley JW. Novel glucokinase activators: a patent review (2008– 2010). Expert Opin. Ther. Pat. 2011; 21: 13-33. doi: 10.1517/13543776.2011.542413

58. Xu J, Lin S, Myers RW, Addona G, Berger JP, Campbell B, et al. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg Med Chem Lett. 2017; 27(9): 2069-2073. doi: 10.1016/j.bmcl.2016.10.085

59. Li W, Zhang X, Sun Y, Liu Z. Recent clinical advances of glucokinase activators in the treatment of diabetes mellitus type 2. Pharmazie. 2020; 75(6): 230-235. doi: 10.1691/ph.2020.0409

60. Bloomgarden Z. Glucokinase and the potential of glucokinase activation in type 2 diabetes. J Diabetes. 2019; 11(8): 626-627. doi: 10.1111/1753-0407.12937

61. Whitticar NV, Nunemaker CS. Reducing glucokinase activity to enhance insulin secretion: a counterintuitive theory to preserve cellular function and glucose homeostasis. Front Endocrinol. 2020; 11: 378. doi: 10.3389/fendo.2020.00378

62. Xu H, Sheng L, Chen W, Yuan F, Yang M, Li H, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of novel glucokinase activator HMS5552: Results from a first-in-human single ascending dose study. Drug Des. Dev. Ther. 2016; 10: 1619–1626. doi: 10.2147/DDDT.S105021

63. Yu Y, Yang X, Tong K, Yin S, Hu G, Zhang F, et al. Efficacy and safety of dorzagliatin for type 2 diabetes mellitus: A meta-analysis and trial sequential analysis. Front. Cardiovasc. Med. 2022; 9: 1041044. doi: 10.3389/fcvm.2022.1041044

64. Zhu D, Zhang Y, Chen L. 182-OR: A novel dual-acting glucokinase activator (GKA) dorzagliatin (HMS5552) achieved primary efficacy endpoint with good safety profiles in T2DM patients after 24 weeks of treatment in a phase III monotherapy trial. Diabetes. 2020; 69(Suppl. S1): 182-OR. doi: 10.2337/db20-182-OR

65. Zhu D, Li X, Ma J, Zeng J, Gan S, Dong X, et al. Dorzagliatin in drug-naive patients with type 2 diabetes: A randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 2022; 28: 965–973. doi: 10.1038/s41591-022-01802-6

66. Syed YY. Dorzagliatin: First Approval. Drugs. 2022; 82: 1745–1750. doi: 10.1007/s40265-022-01813-0

67. Satin LS, Butler PC, Ha J, Sherman AS. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Aspects Med. 2015; 42: 61-77. doi: 10.1016/j.mam.2015.01.003

68. Cho J, Horikawa Y, Enya M, Takeda J, Imai Y, Handa H, et al. Arginine prevents cereblon-mediated ubiquitination of glucokinase and stimulates glucose-6-phosphate production in pancreatic β-cells. Commun Biol. 2020; 3: 497. doi: 10.1038/s42003-020-01226-3

69. Cho J, Miyagawa A, Yamaguchi K, Abe W, Tsugawa Y, Yamamura H, et al. UDP-Glucose: A cereblon-dependent glucokinase protein degrader. Int. J. Mol. Sci. 2022; 23: 9094. doi: 10.3390/ijms23169094

70. Yuan C, Zhang X, He Q, Li J, Lu J, Zou X. L-arginine stimulates CAT-1-mediated arginine uptake and regulation of inducible nitric oxide synthase for the growth of chick intestinal epithelial cells. Mol Cell Biochem. 2015; 399(1-2): 229-36. doi: 10.1007/s11010-014-2249-2

71. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Dis. 2022; 21: 181–200. doi: 10.1038/s41573-021-00371-6


Supplementary files

Review

For citations:


Kuznetsova L.A., Basova N.E., Shpakov A.O. Glucokinase: evolution, regulatory properties, role in the pathogenesis of type 2 diabetes mellitus. Acta Biomedica Scientifica. 2025;10(3):22-36. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.3

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)