Comparative analysis of the effect of drugs lowering intraocular pressure on a primary culture of human corneal epithelium and A549 immortalized cell line
https://doi.org/10.29413/ABS.2024-9.2.4
Abstract
Background. Glaucoma as one of the most common eye diseases can be a comorbid condition of an epithelial corneal defect of various etiologies. Maintaining an optimal level of ophthalmotonus includes the prescription of antiglaucoma drugs, including benzalkonium chloride-preserved drugs.
The aim of the study. To compare the effect of antiglaucoma drugs, as well as benzalkonium chloride (BC), on a primary culture of human corneal epithelium and A549 immortalized cell line.
Methods. The effect of brimonidine, dorzolamide and timolol (1/100, 1/50, 1/20 and 1/10 dilutions; exposure 24 hours) on a monolayer of a human corneal epithelial primary culture and A549 immortalized cell line was assessed by structural changes in cells (phase-contrast microscopy) and MTT assay data. The cytotoxic effect of BC was studied in concentrations corresponding to its content in these dilutions of the antiglaucoma drug. Using a model of a linear defect in the monolayer of a corneal epithelial primary culture and A549 immortalized cell line, the effects of brimonidine, dorzolamide and timolol (1/100 and 1/20 dilutions; exposure 48 hours) were assessed by cell migration activity.
Results. Among drugs (BC-free), dorzolamide (1/50, 1/20 and 1/10 dilutions) causes minor structural changes in human corneal epithelium and A549 immortalized cell line; timolol (1/100, 1/50, 1/20 and 1/10 dilutions) causes minor structural changes in A549 immortalized cell line. Structural changes in both types of cells, a decrease in their metabolic and migration activity occur under the influence of dorzolamide, brimonidine and timolol (BC-preserved) in 1/100, 1/50, 1/20 and 1/10 dilutions. BC at the studied concentrations exhibits a similar effect.
Conclusion. The cytotoxic effect of antiglaucoma drugs is caused by the presence of BC in their composition. Despite similar morphofunctional changes in cells, A549 immortalized cell line is more resistant to the effects of drugs than the human corneal epithelial primary culture. When using it as a cellular model, it is advisable to change the experimental conditions (duration of exposure and concentration of the studied drug).
About the Authors
N. V. FisenkoRussian Federation
Natalia V. Fisenko – Cand. Sc. (Med.), Senior Research Officer at the Department of Ocular Media Pathology.
Rossolimo str. 11A, B, Moscow 119021
A. M. Subbot
Russian Federation
Anastasia M. Subbot – Cand. Sc. (Med.), Senior Research Officer at the Laboratory of Cell Technologies.
Rossolimo str. 11A, B, Moscow 119021
Yusef Yusef
Russian Federation
Yusef Yusef – Dr. Sc. (Med.), Director, M.M. Krasnov Research Institute of Eye Diseases; Professor at the Department of Eye Diseases, I.M. Sechenov FMSMU.
Rossolimo str. 11A, B, Moscow 119021; Trubetskaya str. 8, building 2, Moscow 119991
G. A. Osipyan
Russian Federation
Grigory A. Osipyan – Dr. Sc. (Med.), Head of the Department of Ocular Media Pathology.
Rossolimo str. 11A, B, Moscow 119021
A. D. Panova
Russian Federation
Anna D. Panova – Clinical Research Assistant, M.M. Krasnov RI of Eye Diseases; Junior Research Officer, The Gamaleya NC of Epidemiology and Microbiology.
Rossolimo str. 11A, B, Moscow 119021; Gamaleya str. 18, Moscow 123098
R. R. Agliamutdinov
Russian Federation
Rustem R. Agliamutdinov – Medical Resident.
Rossolimo str. 11A, B, Moscow 119021
References
1. Lieto K, Skopek R, Lewicka A, Stelmasiak M, Klimaszewska E, Zelent A, Szymański Ł, et al. Looking into the eyes – in vitro models for ocular research. Int J Mol Sci. 2022; 23(16): 9158. doi: 10.3390/ijms23169158
2. Alpeeva EV, Sidorenkova AF, Vorotelyak EA. Overview of cell models: From organs cultured in a Petri dish to “organs-on-chips”. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017; 72(4): 187-198. (In Russ.).
3. Shafaie S, Hutter V, Cook MT, Brown MB, Chau DY. In vitro cell models for ophthalmic drug development applications. Biores Open Access. 2016; 5(1): 94-108. doi: 10.1089/biores.2016.0008
4. Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021; 14(1): 24. doi: 10.1186/s13045-021-01037-x
5. Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical use of immortalized cells in medicine: Current advances and future perspectives. Int J Mol Sci. 2023; 24(16): 12716. doi: 10.3390/ijms241612716
6. Maqsood MI, Matin MM, Bahrami AR, Ghasroldasht MM. Immortality of cell lines: Challenges and advantages of establishment. Cell Biol Int. 2013; 37(10): 1038-1045. doi: 10.1002/cbin.10137
7. Zhao C. Cell culture: In vitro model system and a promising path to in vivo applications. J Histotechnol. 2023; 46(1): 1-4. doi: 10.1080/01478885.2023.2170772
8. Wilson SL, Ahearne M, Hopkinson A. An overview of current techniques for ocular toxicity testing. Toxicology. 2015; 327: 32-46. doi: 10.1016/j.tox.2014.11.003
9. European Glaucoma Society terminology and guidelines for glaucoma; 5th ed. Br J Ophthalmol. 2021; 105(Suppl 1): 1-169. doi: 10.1136/bjophthalmol-2021-egsguidelines
10. Ayaki M, Yaguchi S, Iwasawa A, Koide R. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin Exp Ophthalmol. 2008; 36(6): 553-559. doi: 10.1111/j.14429071.2008.01803.x
11. Ayaki M, Iwasawa A, Inoue Y. Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells. Clin Ophthalmol. 2010; 4: 1217-1222. doi: 10.2147/OPTH.S13708
12. Yuan XL, Wen Q, Zhang MY, Fan TJ. Cytotoxicity of pilocarpine to human corneal stromal cells and its underlying cytotoxic mechanisms. Int J Ophthalmol. 2016; 9(4): 505-511. doi: 10.18240/ijo.2016.04.05
13. Rönkkö S, Vellonen KS, Järvinen K, Toropainen E, Urtti A. Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res. 2016; 6(6): 660-675. doi: 10.1007/s13346-0160330-y
14. Durairaj C. Ocular pharmacokinetics. Handb Exp Pharmacol. 2017; 242: 31-55. doi: 10.1007/164_2016_32
15. Tabak S, Schreiber-Avissar S, Beit-Yannai E. Influence of anti-glaucoma drugs on uptake of extracellular vesicles by trabecular meshwork cells. Int J Nanomedicine. 2021; 16: 10671081. doi: 10.2147/IJN.S283164
16. Kucukoduk A, Durmus IM, Aksoy M, Karakurt S. Cytotoxic, apoptotic, and oxidative effects of preserved and preservative-free brimonidine in a corneal epithelial cell line. J Ocul Pharmacol Ther. 2022; 38(8): 576-583. doi: 10.1089/jop.2022.0053
17. Pozarowska D, Pozarowski P, Darzynkiewicz Z. Cytometric assessment of cytostatic and cytotoxic effects of topical glaucoma medications on human epithelial corneal line cells. Cytometry B Clin Cytom. 2010; 78(2): 130-137. doi: 10.1002/cyto.b.20493
18. Sidorova M, Petrikaitė V. The effect of beta adrenoreceptor blockers on viability and cell colony formation of non-small cell lung cancer cell lines A549 and H1299. Molecules. 2022; 27(6): 1938. doi: 10.3390/molecules27061938
19. Abysheva LD, Avdeev RV, Alexandrov AS, Arapiev MU, Bakunina NA, Baranova NA, et al. Influence of local hypotensive glaucoma therapy on the development and progression of dry eye syndrome. RMJ. Clinical Ophthalmology. 2017; 17(2): 74-82. (In Russ.). doi: 10.21689/2311-7729-2017-17-2-74-82
20. Goldstein MH, Silva FQ, Blender N, Tran T, Vantipalli S. Ocular benzalkonium chloride exposure: Problems and solutions. Eye (Lond). 2022; 36(2): 361-368. doi: 10.1038/s41433-021-01668-x
21. Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther. 2010; 27(11): 837-845. doi: doi:10.1007/s12325-010-0070-1
22. Epstein SP, Ahdoot M, Marcus E, Asbell PA. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009; 25(2): 113-119. doi: 10.1089/jop.2008.0098
23. Meloni M, Cattaneo G, De Servi B. Corneal epithelial toxicity of antiglaucoma formulations: In vitro study of repeated applications. Clin Ophthalmol. 2012; 6: 1433-1440. doi: 10.2147/OPTH.S35057
24. Liang H, Baudouin C, Daull P, Garrigue JS, Brignole-Baudouin F. In vitro corneal and conjunctival wound-healing assays as a tool for antiglaucoma prostaglandin formulation characterization. Front Biosci (Landmark Ed). 2022; 27(5): 147. doi: 10.31083/j.fbl2705147
Review
For citations:
Fisenko N.V., Subbot A.M., Yusef Yu., Osipyan G.A., Panova A.D., Agliamutdinov R.R. Comparative analysis of the effect of drugs lowering intraocular pressure on a primary culture of human corneal epithelium and A549 immortalized cell line. Acta Biomedica Scientifica. 2024;9(2):35-49. (In Russ.) https://doi.org/10.29413/ABS.2024-9.2.4