Preview

Acta Biomedica Scientifica

Advanced search

Prospects for using ultrasound of various intensity for the treatment of patients with malignant brain gliomas

https://doi.org/10.29413/ABS.2024-9.1.10

Abstract

Background. Treatment for malignant brain gliomas includes surgery, radiation therapy, and chemotherapy with temozolomide. However, this complex treatment does not prevent tumor relapses and progression, which is caused by the activity of tumor cells and a high mutational burden. Researchers are experimenting with different intensity of focused ultrasound (FUS) in the treatment of glioblastoma (GBM). FUS has shown encouraging results in clinical studies.

The aim of the study. This review presents brief information on the history of the development of  the studied method, the  results of  its  application in  experiments and   clinical trials, as  well  as the  main possible directions for  its  implementation in  neuro-oncology, in  particular, for  the  treatment of  glioblastomas, depending on parameters, including frequency, power, pulse duration and duty cycle.

Methods. We carried out an analysis and interpretation of existing publications; for the search, we used the PubMed database and the keywords “focused ultrasound, glioma, HIFU, LIFU”, as  well  as Yandex and  Google search engines and  the  same keywords in Russian.

Results. Low-intensity FUS can be used to temporarily open the blood-brain barrier (BBB), which limits the diffusion of most macromolecules and therapeutic agents into the brain. High-intensity FUS can cause tumor ablation due to a hyperthermic effect, and also stimulate an immunological attack of tumor cells, activate sonosensitizers to exert a cytotoxic effect on tumor tissue, and can increase the sensitivity of tumors to radiation therapy. Histotripsy causes tumor ablation through acoustic cavitation.

Conclusion. Focused ultrasound is a promising potential treatment for gliomas. Further study in the form of clinical trials should determine the optimal ultrasound parameters to achieve effective treatment for patients with malignant brain tumors.

About the Authors

O. S. Regentova
Russian Scientific Center of Roentgenoradiology
Russian Federation

Olga S. Regentova – Cand. Sc. (Med.), Head of the Department of Pediatric Radiation Oncology with oncology beds, 

Profsoyuznaya str. 86, Moscow 117997



R. A. Parkhomenko
Russian Scientific Center of Roentgenoradiology; Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Roman A. Parkhomenko – Dr. Sc. (Med.), Leading Research Officer at the Laboratory of Radiation Therapy and Complex Methods for Cancer Treatment, Profsoyuznaya str. 86, Moscow 117997;

Professor at the Department of Oncology and Radiology, Miklukho-Maklaya str. 6, Moscow 117198



O. I. Shcherbenko
Russian Scientific Center of Roentgenoradiology
Russian Federation

Oleg I. Shcherbenko – Dr. Sc. (Med.), Chief Research Officer at the Laboratory of Radiation Therapy and Complex Methods for Cancer Treatment, 

Profsoyuznaya str. 86, Moscow 117997



F. F. Antonenko
Russian Scientific Center of Roentgenoradiology
Russian Federation

Fedor F. Antonenko – Dr. Sc. (Med.), Professor, Corresponding Member of RAS, Head of the Laboratory of Radiation Therapy and Complex Methods for Cancer Treatment, 

Profsoyuznaya str. 86, Moscow 117997



N. I. Zelinskaya
Russian Scientific Center of Roentgenoradiology
Russian Federation

Natalia I. Zelinskaya – Cand. Sc. (Med.), Senior Research Officer at the Laboratory of Radiation Therapy and Complex Methods for Cancer Treatment, 

Profsoyuznaya str. 86, Moscow 117997



N. Sidibe
Russian Scientific Center of Roentgenoradiology
Russian Federation

Nelly Sidibe – Radiation Oncologist at the Department of Pediatric Radiation Oncology with oncology beds, 

Profsoyuznaya str. 86, Moscow 117997



P. V. Polushkin
Russian Scientific Center of Roentgenoradiology
Russian Federation

Pavel V. Polushkin – Cand. Sc. (Med.), Radiation Oncologist at the Department of Pediatric Radiation Oncology with oncology beds, Research Officer at the Laboratory of Radiation Therapy and Complex Methods for Cancer Treatment,

Profsoyuznaya str. 86, Moscow 117997



V. A. Solodkiy
Russian Scientific Center of Roentgenoradiology
Russian Federation

Vladimir A. Solodkiy – Dr. Sc. (Med.), Professor, Member of RAS, Director, 

Profsoyuznaya str. 86, Moscow 117997



References

1. Parekh K, LeBlang S, Nazarian J, Mueller S, Zacharoulis S, Hynynen K, et al. Past, present and future of focused ultrasound as an adjunct or complement to DIPG/DMG therapy: A consensus of the 2021 FUSF DIPG meeting. Neoplasia. 2023; 37: 100876. doi: 10.1016/j.neo.2023.100876

2. Ozerov SS, Ryzhova MV, Kumirova EV. Diffuse brainstem tumors in children. Tumor biology and hope for a better outcome. Current state of the problem. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. 2021; 4: 77-86. (In Russ.). doi: 10.17116/neiro20218504177

3. Feldman L, Brown C, Badie B. Chimeric antigen receptor (CAR) T cell therapy for glioblastoma. Neuromolecular Med. 2022; 2021: 1-6. doi: 10.1007/s12017-021-08689-5

4. Yoo HJ, Harapan BN. Chimeric antigen receptor (CAR) immunotherapy: Basic principles, current advances, and future prospects in neuro-oncology. Immunologic Res. 2021; 69(6): 471- 486. doi: 10.1007/s12026-021-09236-x

5. Fu W, Wang W, Li H, Jiao Y, Huo R, Yan Z, et al. Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent glioblastoma. Front Immunol. 2020; 11: 835. doi: 10.3389/fimmu.2020.00835

6. Shen SH, Woroniecka K, Barbour AB, Fecci PE, SanchezPerez L, Sampson JH, et al. CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther. 2020; 20(6): 579-591. doi: 10.1080/14712598.2020.1727436

7. Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: What to do next? Front Oncol. 2023; 13: 1192128. doi: 10.3389/fonc.2023.1192128

8. Stavrakaki E, Dirven CMF, Lamfers MLM. Personalizing oncolytic virotherapy for glioblastoma: In search of biomarkers for response. Cancers (Basel). 2021; 13(4): 614. doi: 10.3390/cancers13040614

9. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21(6): 360-378. doi: 10.1038/s41568-021-00346-0 10. ter Haar G. The history of focused ultrasound. URL: https://www.fusfoundation.org/posts/the-history-of-focused-ultrasound [date of access: 11.03.2021].

10. Laboratory for Industrial and Medical Ultrasound. (In Russ.). URL: http://limu.msu.ru.

11. Nazarenko GI, Chen VS, Dzhan L, Khitrova AN, Paschenko NV. Ultrasonic ablation as a high-tech organ-preserving an alternative to surgery. (In Russ.) URL: https://oncology.ru/specialist/journal_oncology/archive/0209/018.pdf [дата доступа: 31.10.2023].

12. Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. IntJ Nanomedicine. 2021; 16: 185-199. doi: 10.2147/IJN.S286221

13. Zheng Q, Xia B, Huang X, Luo J, Zhong S, Li X. Nanomedicines for high intensity focused ultrasound cancer treatment and theranostics (review). Exp Ther Med. 2023; 25(4): 170. doi: 10.3892/etm.2023.11869

14. Ponomarchuk EM, Buravkov SV, Wang YaN, Khokhlova TD, Khokhlova VA. Morphological analysis of biological tissue lesions induced by high intensity focused ultrasound pulses containing shock fronts. Memoirs of the Faculty of Physics Lomonosov Moscow State University. 2016; 4: 164701. (In Russ.).

15. Lamsam L, Johnson E, Connolly ID, Wintermark M, Hayden Gephart M. A review of potential applications of MRguided focused ultrasound for targeting brain tumor therapy. Neurosurg Focus. 2018; 44(2): 10. doi: 10.3171/2017.11.FOCUS17620

16. Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol. 2022; 157(2): 237-247. doi: 10.1007/s11060-022-03974-0

17. Galimova RM, Illarioshkin SN, Buzaev IV, Kachemaeva OV. Therapy of motor disorders by focused ultrasound under the control of magnetic resonance imaging. Recommendations for neurologists on patient selection. Novye tekhnologii. 2020; 1: 9-15. (In Russ.). doi: 10.24411/2226-079X-2020-12168

18. Janwadkar R, Leblang S, Ghanouni P, Brenner J, Ragheb J, Hennekens CH, et al. Focused ultrasound for pediatric diseases. Pediatrics. 2022; 149(3): e2021052714. doi: 10.1542/peds.2021-05271

19. Moskvicheva LI. Application of HIFU therapy in oncology (2000–2021). P.A. Herzen Journal of Oncology. 2022; 11(1): 6474. (In Russ.). doi: 10.17116/onkolog20221101164

20. Bachu VS, Kedda J, Suk I, Green JJ, Tyler B. High-intensity focused ultrasound: A review of mechanisms and clinical applications. Ann Biomed Eng. 2021; 49(9): 1975-1991. doi: 10.1007/s10439-021-02833-9

21. Galkin MV. The use of transcranial focused ultrasound in CNS diseases. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. 2016; 80(2): 108-118. (In Russ.). doi: 10.17116/neiro2016802108-118

22. Paun L, Moiraghi A, Jannelli G, Nouri A, DiMeco F, Pallud J, et al. From focused ultrasound tumor ablation to brain blood barrier opening for high grade glioma: A systematic review. Cancers (Basel). 2021; 13(22): 5614. doi: 10.3390/cancers13225614

23. Duryea AP, Hall TL, Maxwel AD, Zhen X, Cain CA, et al. Histotripsy erosion of model urinary calculi. J Endourol. 2011; 25(2): 341-344. doi: 10.1089/end.2010.0407

24. Sukovich JR, Cain CA, Pandey AS, Chaudhary N, CameloPiragua S, Allen SP, et al. In vivo histotripsy brain treatment. J Neurosurg. 2018; 131(4): 1-8. doi: 10.3171/2018.4.JNS172652

25. Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, et al. Histotripsy treatment of murine brain and glioma: Temporal profile of magnetic resonance imaging and histological characteristics post-treatment. Ultrasound Med Biol. 2023; S0301- 5629(23)00148-5. doi: 10.1016/j.ultrasmedbio.2023.05.002

26. Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological effects of histotripsy for cancer therapy. Front Oncol. 2021; 11: 681629. doi: 10.3389/fonc.2021.681629

27. Deligne C, Hachani J, Duban-Deweer S, Meignan S, Leblond P, Carcaboso AM, et al. Development of a human in vitro blood-brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids Barriers CNS. 2020; 17: 37. doi: 10.1186/s12987-020-00198-0

28. Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood-brain barrier to treat brain metastases. Int J Mol Sci. 2019; 21(1): 22. doi: 10.3390/ijms21010022

29. Voropaeva EV, Karpova VS, Pospelova TI, Maksimov VN, Vorontsova EV. Current research on the role of the blood-brain barrier in the central nervous system lymphomas development. Journal of Siberian Medical Sciences. 2022; (2): 131-147. (In Russ.). doi: 10.31549/2542-1174-2022-6-2-131-147

30. Brighi C, Reid L, White AL, Genovesi LA, Kojic M, Millar A, et al. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neurooncol Adv. 2020; 2(1): vdaa030. doi: 10.1093/noajnl/vdaa030

31. Bunevicius A, McDannold NJ, Golby AJ. Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg (Hagerstown). 2020; 19(1): 9-18. doi: 10.1093/ons/opz374

32. Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin Cancer Res. 2009; 15: 7092-7098. doi: 10.1158/1078-0432.CCR-09-1349

33. Bérard C, Truillet C, Larrat B, Dhermain F, Estève MA, Correard F, et al. Anticancer drug delivery by focused ultrasoundmediated blood-brain/tumor barrier disruption for glioma therapy: From benchside to bedside. Pharmacol Ther. 2023; 250: 108518. doi: 10.1016/j.pharmthera.2023.108518

34. Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A, et al. Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. J Control Release. 2018; 281: 29-41. doi: 10.1016/j. jconrel.2018.05.005

35. van Vuurden. Van Vuurden group. The Princess Maxima Center. URL: https://research.prinsesmaximacentrum.nl/en/ research-groups/van-vuurden-group [date of access: 31.10.2023].

36. t’ Hart E, Bianco J, Bruin MAC, Derieppe M, Besse HC, Berkhout K, et al. Radiosensitisation by olaparib through focused ultrasound delivery in a diffuse midline glioma model. J Control Release. 2023; 357: 287-298. doi: 10.1016/j.jconrel.2023.03.058

37. Mittelstein DR, Ye Jian, Schibber EF, Roychoudhury A, Martinez LT, Fekrazad MH, Ortiz M, et al. Selective ablation of cancer cells with low intensity pulsed ultrasound. Appl Phys Lett. 2020; 116(1): 013701 doi: 10.1063/1.5128627

38. Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan Dennis E, et al. Ultrasound hyperthermia technology for radiosensitization. Ultrasound Med Biol. 2019; 45: 1025-1043. doi: 10.1016/j.ultrasmedbio.2018.12.007

39. Schneider CS, Woodworth GF, Vujaskovic Z, Mishra MV. Radiosensitization of high-grade gliomas through induced hyperthermia: Review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2020; 142: 43-51. doi: 10.1016/j.radonc.2019.07.017

40. D’Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, et al. Sonodynamic therapy for the treatment of intracranial gliomas. J Clin Med. 2021; 10(5): 1101. doi: 10.3390/jcm10051101

41. Choi V, Rajora MA, Zheng G. Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjugate Chemistry. 2020; 31(4): 967-989.

42. Venter RL. Effects of low intensity bio-resonance focused ultrasound on destroying cancerous cells: A literature review of low intensity bio-resonance focused on destroying cells. IAJPS. 2021; 08(05): 125-144. doi: 10.5281/zenodo.4752632

43. Meng Y, Pople CB, Suppiah S, Llinas M, Huang Y, Sahgal A, et al. MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors. Neuro Oncol. 2021; 23(10): 1789-1797. doi: 10.1093/neuonc/noab057

44. Zhu L, Nazeri A, Pacia CP, Yue Y, Chen H. Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS One. 2020; 15(6): e0234182. doi: 10.1371/journal.pone.0234182

45. Pacia CP, Zhu L, Yang Y, Yue Y, Nazeri A, Gach M, et al. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep. 2020; 10(1):7449. doi: 10.1038/s41598-020-64440-3


Review

For citations:


Regentova O.S., Parkhomenko R.A., Shcherbenko O.I., Antonenko F.F., Zelinskaya N.I., Sidibe N., Polushkin P.V., Solodkiy V.A. Prospects for using ultrasound of various intensity for the treatment of patients with malignant brain gliomas. Acta Biomedica Scientifica. 2024;9(1):96-106. (In Russ.) https://doi.org/10.29413/ABS.2024-9.1.10

Views: 627


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)