Preview

Acta Biomedica Scientifica

Advanced search

Lysophosphatidic acid and itsreceptors: Role in bronchial asthma pathogenesis

https://doi.org/10.29413/ABS.2024-9.1.2

Abstract

Lysophosphatidic acid (LPA) is a biologically active lipid mediator that regulates a number ofsignaling pathways involved in the pathogenesis of bronchial asthma. Attention to studying the relationship of LPA with LPA receptors (LPARs) and ion channels with transient receptor potential (TRP) is caused by their role in the initiation and development of bronchial obstruction, which suggests the development of new effective strategies for the treatment of bronchial asthma through blocking LPA synthesis and/or regulation of the activity of the ligand-receptor relationship.

The aim of the review. To summarize ideas on the role of lysophosphatidic acid and its receptors in the pathogenesis of bronchial asthma based on the analysis of articles published in English in 2020–2023 from the PubMed database.

Conclusion. The review summarizes recent literature data on the chemical structure, biosynthetic pathways and LPA receptors. It presents the information on the role of LPA, LPARs andTRP channels inthepathogenesis of bronchial asthma; summarizes the bronchial asthma therapeutic strategies targeting LPA, LPARs, andTRP channels. The review highlights not only a new perspective on understanding the mechanisms of initiation of asthmatic reactions, but also possible ways to manage them at the stage of correction of their development.

About the Authors

O. Yu. Kytikova
Vladivostok Branch, Far Eastern Scientific Centre of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Oxana Yu. Kytikova – Dr. Sc. (Med.), Senior Research Officer at the laboratory of  Rehabilitation Treatment,

Russkaya str. 73G, Vladivostok 690105



T. P. Novgorodtseva
Vladivostok Branch, Far Eastern Scientific Centre of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Tatyana P. Novgorodtseva – Dr. Sc. (Biol.), Professor, Deputy Director for Science, Chief Research Officer at the Laboratory of Biomedical Research, 

Russkaya str. 73G, Vladivostok 690105



Yu. K. Denisenko
Vladivostok Branch, Far Eastern Scientific Centre of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Treatment
Russian Federation

Yulia K. Denisenko – Dr. Sc. (Biol.), Head of the Laboratory of Biomedical Research, 

Russkaya str. 73G, Vladivostok 690105



References

1. Kano K, AokiJ, Hla T. Lysophospholipid mediators inhealth and disease. Annu Rev Pathol. 2022; 17: 459-483. doi: 10.1146/annurev-pathol-050420-025929

2. Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic acid receptors: Biochemical and clinical implications in different diseases. J Cancer. 2020; 11(12): 3519-3535. doi: 10.7150/jca.41841

3. Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. JNeuroinflammation. 2021; 18(1): 191. doi: 10.1186/s12974-021-02241-9

4. Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, HerringtonBA, et al. PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol. 2021; 599(4): 1335-1354. doi: 10.1113/JP280749

5. KondoM, TezukaT, OgawaH, KoyamaK, BandoH, AzumaM, et al. Lysophosphatidic acid regulates the differentiation of Th2 cells and its antagonist suppresses allergic airway inflammation. Int Arch Allergy Immunol. 2021; 182: 1-13. doi: 10.1159/000509804

6. Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, et al. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem. 2021; 222: 113574. doi: 10.1016/j.ejmech.2021.113574

7. Zhao J, Zhao Y. Lysophospholipids in lung inflammatory diseases. Adv Exp Med Biol. 2021; 1303: 373-391. doi: 10.1007/978-3-030-63046-1_20

8. Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol. 2018; 120(3): 1198-1211. doi: 10.1152/jn.00226.2018

9. Langedijk J, Araya EI, Barroso AR, Tolenaars D, Nazaré M, Belabed H, et al. An LPAR5 –antagonist that reduces nociception and increases pruriception. Front Pain Res (Lausanne). 2022; 3: 963174. doi: 10.3389/fpain.2022.963174

10. Kytikova OY, Novgorodtseva TP, Denisenko YK, Naumov DE, Gvozdenko TA, Perelman JM. Thermosensory transient receptor potential ion channels and asthma. Biomedicines. 2021; 9(7): 816. doi: 10.3390/biomedicines9070816

11. Jordt SE. TRPA1: An asthma target with a zing. J Exp Med. 2021; 218(4): e20202507. doi: 10.1084/jem.20202507

12. Deng L, Ma P, Wu Y, Ma Y, Yang X, Li Y, et al. High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model. Environ Pollut. 2020; 256: 113433. doi: 10.1016/j.envpol.2019.113433

13. Long L, Yao H, Tian J, Luo W, Yu X, Yi F, et al. Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in patients with chronic refractory cough. Respir Res. 2020; 20: 112. doi: 10.1186/s12931-019-1077-z

14. Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient receptor potential (TRP) channels inairway toxicity anddisease: An update. Cells. 2022; 11(18): 2907. doi: 10.3390/cells11182907

15. Li M, Fan X, Ji L, Fan Y, Xu L. Exacerbating effects of trimellitic anhydride in ovalbumin-induced asthmatic mice and the gene and protein expressions of TRPA1, TRPV1, TRPV2 in lung tissue. Int Immunopharmacol. 2019; 69: 159-168. doi: 10.1016/j.intimp.2019.01.038

16. Wang C, Meng X, Meng M, Shi M, Sun W, Li X, et al. Oxidative stress activates the TRPM2-Ca2+-NLRP3 axis to promote PM2.5-induced lung injury of mice. Biomed Pharmacother. 2020; 130: 110481. doi: 10.1016/j.biopha.2020.110481

17. Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman Al-Ahmad M, еt al. WAO-ARIA consensus on chronic cough – Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J. 2021; 14(12): 100617. doi: 10.1016/j.waojou.2021.100617

18. Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamilyV (TRPV) anditsimpor tance in asthma. EurJ Pharmacol. 2022; 915: 174692. doi: 10.1016/j.ejphar.2021.174692

19. Benítez-Angeles M, Morales-Lázaro SL, JuárezGonzález E, Rosenbaum T. TRPV1: Structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020; 21(10): 3421. doi: 10.3390/ijms21103421

20. Tigyi GL, Johnson LR, Lee SC, Norman DD, Szabo E, Balogh A, et al. Lysophosphatidic acid type 2 receptor agonists in targeted drug development offer broad therapeutic potential. J Lipid Res. 2019: 60(3); 464-474. doi: 10.1194/jlr.S091744

21. Zulfikar S, Mulholland S, Adamali H, Barratt SL. Inhibitors of the autotaxin-lysophosphatidic acid axis and their potential in the treatment of interstitial lung disease: Current perspectives. Clin Pharmacol. 2020; 12: 97-108. doi: 10.2147/CPAA.S228362

22. Yaginuma S, Kawana H, Aoki J. Current knowledge on mammalian phospholipase A1, brief history, structures, biochemical and pathophysiological roles. Molecules. 2022; 27(8): 2487. doi: 10.3390/molecules27082487

23. Panagopoulou M, Fanidis D, Aidinis V, Chatzaki E. ENPP2 methylation in health and cancer. IntJ Mol Sci. 2021; 22(21): 11958. doi: 10.3390/ijms222111958

24. Joshi L, Plastira I, Bernhart E, ReicherH, TrieblA, KöfelerHC, et al. Inhibition of autotaxin and lysophosphatidic acid receptor 5 attenuates neuroinflammation in LPS-activated BV-2 microglia and a mouse endotoxemia model. IntJ Mol Sci. 2021; 22(16); 8519. doi: 10.3390/ijms22168519

25. Liu S, PaknejadN, Zhu L, Kihara Y, Ray M, Chun J, et al. Differential activation mechanisms oflipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nat Commun. 2022; 13(1): 731. doi: 10.1038/s41467-022-28417-2

26. Tran KC, Zhao J. Lysophosphatidic acid regulates Rho family of GTPases in lungs. Cell Biochem Biophys. 2021; 79(3): 493-496. doi: 10.1007/s12013-021-00993-y

27. Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett. 2021; 748: 135719. doi: 10.1016/j.neulet.2021.135719

28. Yelshanskaya MV, Sobolevsky AI. Ligand-binding sites in vanilloid-subtype TRP channels. Front Pharmacol. 2022; 13: 900623. doi: 10.3389/fphar.2022.900623

29. Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020; 209: 107497. doi: 10.1016/j.pharmthera.2020.107497

30. Nam JH, Kim WK. The role of TRP channels in allergic inflammation and its clinical relevance. Curr Med Chem. 2020; 27(9): 1446-1468. doi: 10.2174/0929867326666181126113015

31. Fine M, Li X. A structural overview of TRPML1 and the TRPML family. Handb Exp Pharmacol. 2023; 278: 181-198. doi: 10.1007/164_2022_602

32. Nadezhdin KD, Neuberger A, Trofimov YA, Krylov NA, Sinica V, Kupko N, et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat Struct Mol Biol. 2021; 28(7): 564-572. doi: 10.1038/s41594-021-00615-4

33. Thapa D, Valente JS, Barrett B, Smith MJ, Argunhan F, Lee SY, et al. Dysfunctional TRPM8 signalling in the vascular response to environmental cold in ageing. Elife. 2021; 10: e70153. doi: 10.7554/eLife.70153

34. Islas LD. Closing in on the heat-activation mechanisms of TRPV channels. J Physiol. 2021; 599(21): 4733-4734. doi: 10.1113/JP282347

35. Phan TX, Ton HT, Gulyás H, Pórszász R, Tóth A, Russo R, et al. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction andblood pressure. JPhysiol. 2020; 598(24): 5639- 5659. doi: 10.1113/JP279909

36. Balestrini A, Joseph V, Dourado M, Reese RM, Shields SD, Rougé L, et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med. 2021; 218: e20201637. doi: 10.1084/jem.20201637

37. Rapp E, Lu Z, Sun L, Serna SN, Almestica-Roberts M, Burrell KL, et al. Mechanisms and consequences of variable TRPA1 expression by airway epithelial cells: Effects of TRPV1 genotype and environmental agonists on cellular responses to pollutants in vitro and asthma. Environ Health Perspect. 2023; 131(2): 27009. doi: 10.1289/EHP11076

38. Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, et al. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev. 2020; 100(2): 725-803. doi: 10.1152/physrev.00005.2019

39. Reese RM, Dourado M, Anderson K, Warming S, Stark KL, Balestrini A, et al. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain; itch; and asthma. Sci Rep. 2020; 10(1): 979. doi: 10.1038/s41598-020-57936-5

40. Jentsch Matias de Oliveira JR, Amorim MA, André E. The role of TRPA1 and TRPV4 channels in bronchoconstriction and plasma extravasation in airways of rats treated with captopril. Pulm Pharmacol Ther. 2020; 65: 102004. doi: 10.1016/j.pupt.2021.102004

41. Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M. Interaction between TRPA1 and TRPV1: synergy on pulmonary sensory nerves. Pulm Pharmacol Ther. 2015; 35: 87-93. doi: 10.1016/j.pupt.2015.08.003

42. Riemma MA, Cerqua I, Romano B, Irollo E, Bertolino A, Camerlingo R, et al. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol. 2022; 179(8): 1753-1768. doi: 10.1111/bph.15754

43. Corte TJ, Lancaster L, Swigris JJ, Maher TM, Goldin JG, Palmer SM, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA1) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021; 8(1): e001026. doi: 10.1136/bmjresp-2021-001026

44. KimSJ, MoonHG, ParkGY. The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids. 2020; 1865(5): 158641. doi: 10.1016/j.bbalip.2020.158641

45. Georas SN. LPA and autotaxin: Potential drug targets inasthma? Cell Biochem Biophys. 2021; 79(3): 445-448. doi: 10.1007/s12013-021-01023-7

46. Zhao Y, Hasse S, Vaillancourt M, Zhao C, Davis L, Boilard E, et al. Phospholipase A1 member A activates fibroblast-like synoviocytes through the autotaxin-lysophosphatidic acid receptor axis. IntJ Mol Sci. 2021; 22(23): 12685. doi: 10.3390/ijms222312685

47. Di Lollo V, Canciello A, Orsini M, Bernabò N, Ancora M, Di Federico M et al. Transcriptomic and computational analysis identified LPA metabolism, KLHL14 and KCNE3 as novel regulators of epithelial-mesenchymal transition. Sci Rep. 2020; 10(1): 4180. doi: 10.1038/s41598-020-61017-y

48. Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and poten tial new therapy for asthma. Pharmacol Res. 2020; 159: 104995. doi: 10.1016/j.phrs.2020.104995

49. Falvey A, Duprat F, Simon T, Hugues-Ascery S, Conde SV, GlaichenhausN, et al. Electrostimulation ofthe carotid sinus nerve in mice attenuates inflammation via glucocorticoid receptor on myeloid immune cells. J Neuroinflammation. 2020; 17(1): 368. doi: 10.1186/s12974-020-02016-8

50. Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res. 2015; 58: 51-75. doi: 10.1016/j.plipres.2015.01.004

51. Lee YJ, Im DS. Efficacy comparison of LPA2 antagonist H2L5186303 and agonist GRI977143 on ovalbumin-induced allergic asthma in BALB/c mice. Int J Mol Sci. 2022; 23(17): 9745. doi: 10.3390/ijms23179745

52. Jia Y, Li Y, XuXD, Tian Y, ShangH. Design anddevelopment of autotaxin inhibitors. Pharmaceuticals (Basel). 2021; 14(11): 1203. doi: 10.3390/ph14111203

53. Cuozzo JW, Clark MA, Keefe AD, Kohlmann A, Mulvihill M, Ni H, et al. Novel autotaxin inhibitor for the treatment of idiopathic pulmonary fibrosis: A clinical candidate discovered using DNA-encoded chemistry. J Med Chem. 2020; 63(14): 7840-7856. doi: 10.1021/acs.jmedchem.0c00688

54. Nie C, Zhang L, Chen X, Li Y, Ha F, Li H. Autotaxin: An early warning biomarker for acute-on-chronic liver failure. J Clin Transl Hepatol. 2020; 8: 240. doi: 10.14218/JCTH.2020.00045

55. Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/lysophosphatidic acid axis: From bone biology to bone disorders. IntJ Mol Sci. 2022; 23(7): 3427. doi: 10.3390/ijms23073427

56. Fukui M, Tsutsumi T, Yamamoto-Mikami A, Morito K, TakahashiN, TanakaT, et al. Distinct contributions oftwo choline-producing enzymatic activities to lysophosphatidic acid production in human amniotic fluid from pregnant women inthe second trimester andafter parturition. Prostaglandins Other Lipid Mediat. 2020; 150: 106471.

57. Isshiki T, ShimizuH, SakamotoS, YamasakiA, Miyoshi S, Nakamura Y, et al. Serum autotaxin levels inchronic disease andacute exacerbation of fibrosing interstitial lung disease. ERJ Open Res. 2022; 8(2): 00683-2021. doi: 10.1183/23120541.00683-2021

58. Abdel-Magid AF. Therapeutic potential of autotaxin inhibitors in treatment of interstitial lung diseases. ACS Med Chem Lett. 2020; 11(11): 2075-2076. doi: 10.1021/acsmedchemlett

59. Lei H, Li Z, Li T, Wu H, Yang J, Yang X, et al. Novel imidazo[1,2-a]pyridine derivatives as potent ATX allosteric inhibitors: Design, synthesis and promising in vivo anti-fibrotic efficacy in mice lung model. Bioorg Chem. 2022; 120: 105590. doi: 10.1016/j.bioorg.2021.105590


Review

For citations:


Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K. Lysophosphatidic acid and itsreceptors: Role in bronchial asthma pathogenesis. Acta Biomedica Scientifica. 2024;9(1):12-22. (In Russ.) https://doi.org/10.29413/ABS.2024-9.1.2

Views: 541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)