Preview

Acta Biomedica Scientifica

Advanced search

Genetic mechanisms of disorders in the metabolism of polyunsaturated fatty acids in the development of chronic inflammation in bronchial asthma

https://doi.org/10.29413/ABS.2025-10.3.6

Abstract

Аsthma is associated with systemic inflammation, an important role in the development of which is played by lipid metabolism disorders, in particular, changes in the physiological balance of essential fatty acids (FAs). The balance of ω3 and ω6 polyunsaturated fatty acids depends on their adequate exogenous intake and endogenous processing with the participation of FA desaturases and elongase enzymes. Desaturases are encoded by FA desaturase genes (FADS), elongases by elongase genes (ELOVL). Most studies have focused on FADS gene polymorphisms that can alter the exogenous synthesis of PUFAs, which underlies the disruption of the formation of pro-inflammatory and pro-resolving lipid mediators responsible for the development of chronic inflammation. However, the mechanisms underlying the predisposition of carriers of polymorphic variants of FADS genes to the development of asthma are unknown. Evidence is emerging that ELOVL is involved in the pathophysiology of аsthma. Other genes associated with the development of аsthma, atopy, and PUFA metabolism have recently been discovered, the genes of members of the prolyl oligopeptidase family DPP10 and CD26/DPP4. Identification of carriers of these gene polymorphisms will allow to review and supply modern methods of treating asthma. The health effects of dietary ω3 and ω6 PUFAs may also vary depending on genetic variants in genes associated with PUFA metabolism. This raises the question of the need to study the genetic component in the formation of the body’s response to the development of systemic inflammation in asthma and methods of its correction through nutritional PUFAs.
The aim. To summarize the current understanding of the association of polymorphism of FADS, ELOVL genes and other genes associated with PUFA metabolism with lipid metabolism disorders and their role in the development of аsthma based on an analysis of articles published before 2024 in the PubMed database.

About the Authors

O. Yu. Kytikova
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Oxana Yu. Kytikova – Dr. Sc. (Med.), Senior Researcher at the laboratory of rehabilitative treatment 

Russkaya Str., 73-g, Vladivostok 690105



T. P. Novgorodtseva
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tatyana P. Novgorodtseva – Dr. Sc. (Biol.), Professor, Chief Researcher at the laboratory of biomedical research, Deputy Director for research 

Russkaya Str., 73-g, Vladivostok 690105



T. T. Bogomaz
Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
Russian Federation

Tamara T. Bogomaz – graduate student at the laboratory of biomedical research 

Russkaya Str., 73-g, Vladivostok 690105



References

1. Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2021; 59(1): 2102730. doi: 10.1183/13993003.02730-2021

2. Shi HL, Huang KW. Annual progress on bronchial asthma diagnosis and treatment in 2023. Zhonghua Jie He He Hu Xi Za Zhi. 2024; 47(2): 157-162. doi: 10.3760/cma.j.cn112147-20231129-00348

3. Wang T, Huang X, Dai LX, Zhan KM, Wang J. Functional connectivity alterations in the thalamus among patients with bronchial asthma. Front Neurol. 2024; 15: 1378362. doi: 10.3389/fneur.2024.1378362

4. González-Becerra K, Ramos-Lopez O, Barrón-Cabrera E, Riezu-Boj JI, Milagro FI, Martínez-López E, et al. Fatty acids, epigenetic mechanisms and chronic diseases: a systematic review. Lipids Health Dis. 2019; 18(1): 178. doi: 10.1186/s12944-019-1120-6

5. Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol. 2023; 958: 176047. doi: 10.1016/j.ejphar.2023.176047

6. Wickstead ES, Elliott BT, Pokorny S, Biggs C, Getting SJ, McArthur S. Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFkappaB Activity. Int J Mol Sci. 2023; 24(21): 15996. doi: 10.3390/ijms242115996

7. Kytikova O, Denisenko Y, Novgorodtseva T, Kovalenko I, Antonyuk M. Polyunsaturated fatty acids and lipid mediators controlling chronic inflammation in asthma. Russian Open Medical Journal. 2023; 1(12): 2. doi: 10.15275/rusomj.2023.0201

8. Tashima N, Matsumoto H, Nishi K, Terada S, Kogo M, et al. Evaluation of elevated plasma fatty acids as relevant factors for adult-onset asthma: The Nagahama Study. Allergol Int. 2024; 73(1): 65-70. doi: 10.1016/j.alit.2023.04.005

9. Denisenko Y, Novgorodtseva T, Vitkina T, Knyshova V, et al. Associations of fatty acid composition in leukocyte membranes with systemic inflammation in chronic obstructive pulmonary disease progression. Russian Open Medical Journal. 2022; 11(4): 1-8. doi: 10.15275/rusomj.2022.0401

10. Novgorodtseva TP, Denisenko YuK, Kytikova OYu, Antonyuk MV, Gvozdenko TA, Vitkina TI, et al. Regulatory mechanisms of systemic inflammation in respiratory pathology. Vladivostok; 2021. (In Russ.).

11. Al Meslamani AZ. Insights into the immunological links between dietary habits and asthma. Expert Rev Clin Immunol. 2024; 20(3): 245-248. doi: 10.1080/1744666X.2023.2277864

12. Worthmann A, Ridder J, Piel SYL, Evangelakos I, Musfeldt M, Voß H, et al. Fatty acid synthesis suppresses dietary polyunsaturated fatty acid use. Nat Commun. 2024; 15(1): 45. doi: 10.1038/s41467-023-44364-y

13. Czumaj A, Śledziński T. Biological role of unsaturated fatty acid desaturases in health and disease. Nutrients. 2020; 12(2): 356. doi: 10.3390/nu12020356

14. Cerone M, Smith TK. Desaturases: structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life. 2022; 74(11): 1036-1051. doi: 10.1002/iub.2671

15. Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. Genes Nutr. 2024; 19(1): 11. doi: 10.1186/s12263-024-00747-4

16. Zharmakhanova G, Syrlybayeva L, Nurbaulina E, Baikadamova L, Eshtayeva G. Inborn errors of fatty acid metabolism (Review). Georgian Med News. 2020; (303): 161-167.

17. U.S. National Library of Medicine. National Center for Biotechnology Information. 2024. URL: https://www.ncbi.nlm.nih.gov/snp/rs174547 [date of access: March 25, 2024].

18. Talaei M, Sdona E, Calder PC, Jones LR, Emmett PM, Granell R, et al. Intake of n-3 polyunsaturated fatty acids in childhood, FADS genotype and incident asthma. Eur Respir J. 2021; 58(3): 2003633. doi: 10.1183/13993003.03633-2020

19. Tanjung C, Harris CP, Demmelmair H, Dwitya S, Munasir Z, Sudoyo H, et al. Novel Interactions of Myristic Acid and FADS3 Variants Predict Atopic Dermatitis among Indonesian Infants. Nutrients. 2022; 14: 4676. doi: 10.3390/nu14214676

20. Standl M, Sausenthaler S, Lattka E, Koletzko S, et al. FADS gene variants modulate the effect of dietary fatty acid intake on allergic diseases in children. Allergy Eur. J. Allergy Clin. Immunol. 2021; 66: 185–186. doi: 10.1111/j.1365-2222.2011.03833.x

21. Xu J, Gaddis N, Bartz T, Hou R, Manichaikul A, Pankratz N, et al. Omega-3 fatty acids and genome-wide interaction analyses reveal DPP10-pulmonary function association. Am. J. Respir. Crit. Care Med. 2019; 199: 631-642. doi: 10.1164/rccm.201802-0304OC

22. Lee-Sarwar KA, Fischer-Rasmussen K, Bønnelykke K, Bisgaard H, Chawes B, et al. Omega-3 fatty acids interact with DPP10 region genotype in association with childhood atopy. Nutrients. 2023; 15(10): 2416. doi: 10.3390/nu15102416

23. Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, et al. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in different lung diseases: new evidence. Front Pharmacol. 2021; 12: 731453. doi: 10.3389/fphar.2021.731453

24. Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020; 57(7): 779-783. doi: 10.1007/s00592-020-01539-z

25. Koyanagi Y, Kawasaki T, Kasuya Y, Hatano R, Sato S, Takahashi Y, et al. Functional roles of CD26/DPP4 in bleomycin-induced pulmonary fibrosis. Physiol Rep. 2023; 11(6):e15645. doi: 10.14814/phy2.15645

26. Reynolds LM, Dutta R, Seeds MC, Lake KN, Hallmark B, Mathias RA, et al. FADS genetic and metabolomic analyses identify the 5 desaturase (FADS1) step as a critical control point in the formation of biologically important lipids. Sci Rep. 2020; 10(1): 15873. doi: 10.1038/s41598-020-71948-1

27. Kytikova OYu, Novgorodtseva TP, Denisenko YuK, Antonyuk MV, Gvozdenko TA. Associations of delta fatty acid desaturase gene polymorphisms with lipid metabolism disorders. Russian Open Medical Journal. 2021; 10: 4. doi: 10.15275/rusomj.2021.0403

28. Venter C, Meyer RW, Nwaru BI, et al. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy. 2019; 74(8): 1429-1444. doi: 10.1111/all.13764

29. Brustad N, Bønnelykke K, Chawes B. Dietary prevention strategies for childhood asthma. Pediatr Allergy Immunol. 2023; 34(7): e13984. doi: 10.1111/pai.13984

30. Lee-Sarwar K, Kelly RS, Lasky-Su J, Kachroo P, Zeiger RS, O’Connor GT, et al. Dietary and plasma polyunsaturated fatty acids are inversely associated with asthma and atopy in early childhood. J Allergy Clin Immunol Pract. 2019; 7: 529-38.e8. doi: 10.1016/j.jaip.2018.07.039

31. Liu G, Ye H, Cheng Q, Zhao J, Ma C, Jie H. The association of polyunsaturated fatty acids and asthma: a cross-sectional study. J Health Popul Nutr. 2023; 42(1): 91. doi: 10.1186/s41043-023-00435-w

32. Kim EK, Ju SY. Asthma and dietary intake of fish, seaweeds, and fatty acids in Korean adults. Nutrients. 2019; 11(9): 2187. doi: 10.3390/nu11092187

33. Abdo-Sultan MK, Abd-El-Lateef RS, Kamel FZ. Efficacy of Omega-3 fatty acids supplementation versus sublingual immunotherapy in patients with bronchial asthma. Egypt J Immunol. 2019; 26(1): 79-89.

34. Zúñiga-Hernández J, Sambra V, Echeverría F, Videla LA, Valenzuela R. N-3 PUFAs and their specialized pro-resolving lipid mediators on airway inflammatory response: beneficial effects in the prevention and treatment of respiratory diseases. Food Funct. 2022; 13(8): 4260-4272. doi: 10.1039/d1fo03551g

35. Nagel G, Linseisen J. Dietary intake of fatty acids, antioxidants and selected food groups and asthma in adults. Eur. J. Clin. Nutr. 2005; 59: 8. doi: 10.1038/sj.ejcn.1602025

36. Lee-Sarwar KA, Fischer-Rasmussen K, Bønnelykke K, Bisgaard H, Chawes B, Kelly RS, et al. Omega-3 Fatty acids interact with DPP10 region genotype in association with childhood atopy. Nutrients. 2023; 15(10): 2416. doi: 10.3390/nu15102416

37. Stratakis N, Roumeliotaki T, Oken E, et al. Fish and seafood consumption during pregnancy and the risk of asthma and allergic rhinitis in childhood: a pooled analysis of 18 European and US birth cohorts. Int J Epidemiol. 2017; 46: 1465–1477. doi: 10.1093/ije/dyx007

38. de Carvalho C, Caramujo M. The various roles of fatty acids. Molecules. 2018; 23(10): 2583. doi: 10.3390/molecules23102583

39. Kim J, Kim RJ, Lee SB, Suh MC. Protein-protein interactions in fatty acid elongase complexes are important for very-long-chain fatty acid synthesis. J Exp Bot. 2022; 73(9): 3004-3017. doi: 10.1093/jxb/erab543

40. Deák F, Anderson RE, Fessler JL, Sherry DM. Novel cellular functions of very long chain-fatty acids: insight from ELOVL4 mutations. Front Cell Neurosci. 2019; 13: 428. doi: 10.3389/fncel.2019.00428

41. Nie L, Pascoa TC, Pike ACW, Bushell SR, Quigley A, Ruda GF, et al. The structural basis of fatty acid elongation by the ELOVL elongases. Nat Struct Mol Biol. 2021; 28(6): 512-520. doi: 10.1038/s41594-021-00605-6

42. Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. FADS1 and FADS2 polymorphisms modulate fatty acid metabolism and dietary impact on health. Annu Rev Nutr. 2019. 39: 21–44. doi: 10.1146/annurev-nutr-082018-124250

43. Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. Implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19. Prostaglandins leukoessent fatty acids. 2020; 162: 102183. doi: 10.1016/j.plefa.2020.102183

44. Huang T, Long Y, Ou Y, Li J, Huang Y, Gao J. Association between circulating fatty acid metabolites and asthma risk: a two-sample bidirectional Mendelian randomization study. BMC Med Genomics. 2023; 16(1): 112. doi: 10.1186/s12920-023-01545-4

45. Joshi K, Gadgil M, Pandit A, Otiv S, Kothapalli KS, Brenna JT. Dietary pattern regulates fatty acid desaturase 1 gene expression in Indian pregnant women to spare overall long chain polyunsaturated fatty acids levels. Mol. Biol. Rep. 2019; 46: 687–693. doi: 10.1007/s11033-018-4524-x

46. Khamlaoui W, Mehri S, Hammami S, Hammouda S, Chraeif I, Elosua R, Hammami M. Association between genetic variants in FADS1-FADS2 and ELOVL2 and obesity, lipid traits, and fatty acids in tunisian population. Clin Appl Thromb Hemost. 2020; 26: 1076029620915286. doi: 10.1177/1076029620915286

47. Wu WC, Wu PY, Chan CY, Lee MF, Huang CY. Effect of FADS1 rs174556 genotype on polyunsaturated fatty acid status: a systematic review and meta-analysis. Adv Nutr. 2023; 14(2): 352-362. doi: 10.1016/j.advnut.2023.01.007

48. Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, et al. Genome-wide association study for serum Omega-3 and Omega-6 polyunsaturated fatty acids: exploratory analysis of the sex-specific effects and dietary modulation in mediterranean subjects with metabolic syndrome. Nutrients. 2020; 12(2): 310. doi: 10.3390/nu12020310

49. Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty acid profile and genetic variants of proteins involved in fatty acid metabolism could be considered as disease predictor. Diagnostics (Basel). 2023; 13(5): 979. doi: 10.3390/diagnostics13050979

50. Losol P, Rezwan FI, Patil VK, Venter C, Ewart S, Zhang H, et al. Effect of gestational oily fish intake on the risk of allergy in children may be influenced by FADS1/2, ELOVL5 expression and DNA methylation. Genes Nutr. 2019; 14: 20. doi: 10.1186/s12263-019-0644-8

51. Harris DN. Evolution of Hominin polyunsaturated fatty acid metabolism: from Africa to the New World. Genome Biol. Evol. 2019; 11: 1417–1430. doi: 10.1093/gbe/evz071

52. Conway MC, McSorley EM, Mulhern MS, Strain JJ, van Wijngaarden E, Yeates AJ. Influence of fatty acid desaturase (FADS) genotype on maternal and child polyunsaturated fatty acids (PUFA) status and child health outcomes: a systematic review. Nutr Rev. 2020: nuz086. doi: 10.1093/nutrit/nuz086

53. Simopoulos AP, Serhan CN, Bazinet RP. The need for precision nutrition, genetic variation and resolution in Covid-19 patients. Mol Aspects Med. 2021; 77: 100943. doi: 10.1016/j.mam.2021.100943

54. Sergeant S, Keith BA, Seeds MC, Legins JA, Young CB, Vitolins MZ. Impact of FADS gene variation and dietary fatty acid exposure on biochemical and anthropomorphic phenotypes in a Hispanic/Latino cohort. Front Nutr. 2023; 10: 1111624. doi: 10.3389/fnut.2023.1111624

55. Chilton FH, Manichaikul A, Yang C, O’Connor TD, Johnstone LM, Blomquist S, et al. Interpreting clinical trials with Omega-3 Supplements in the context of ancestry and FADS genetic variation. Front Nutr. 2022; 8: 808054. doi: 10.3389/fnut.2021.808054

56. Sim S, Choi Y, Lee DH, Lee HR, Seob Shin Y, Park HS. Contribution of dipeptidyl peptidase 10 to airway dysfunction in patients with NSAID-exacerbated respiratory disease. Clin Exp Allergy. 2022; 52(1): 115-126. doi: 10.1111/cea.14003

57. Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol. 2019; 56(2): 139-160. doi: 10.1007/s12016-016-8578-z

58. Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl Peptidase 4 Inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 2020; 209, 107503. doi: 10.1016/j.pharmthera.2020.107503

59. Zou H, Zhu N, Li S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin Ther Targets. 2020; 24(2): 147-153. doi: 10.1080/14728222.2020.1721468

60. Zorampari C, Prakash A, Rehan HS, Gupta LK. Serum dipeptidyl peptidase-4 and eosinophil cationic protein levels in patients of bronchial asthma. Pulm Pharmacol Ther. 2022; 72: 102109. doi: 10.1016/j.pupt.2021.102109

61. Abuelizz HA, AlRasheed MM, Alhoshani A, Alhawassi T. Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People. Vaccines (Basel). 2021; 9(10): 1193. doi: 10.3390/vaccines9101193

62. Xing X, Han Y, Zhou X. Association between DPP-4 gene polymorphism and serum lipid levels in Chinese type 2 diabetes individuals. Neuropeptides. 2016; 60: 1–6. doi: 10.1016/j.npep.2016.08.005

63. Wang Z, Liu Y, Wang W, Qu H, Han Y, Hou Y. Association of dipeptidyl peptidase IV polymorphism, serum lipid profile, and coronary artery stenosis in patients with coronary artery disease and type 2 diabetes. Medicine (Baltimore). 2021; 100(13): e25209. doi: 10.1097/MD.0000000000025209


Supplementary files

Review

For citations:


Kytikova O.Yu., Novgorodtseva T.P., Bogomaz T.T. Genetic mechanisms of disorders in the metabolism of polyunsaturated fatty acids in the development of chronic inflammation in bronchial asthma. Acta Biomedica Scientifica. 2025;10(3):59-69. (In Russ.) https://doi.org/10.29413/ABS.2025-10.3.6

Views: 431


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)