Preview

Acta Biomedica Scientifica

Расширенный поиск

Накопление агрегированного альфасинуклеина в структурах нервной ткани при нейродегенеративных заболеваниях

https://doi.org/10.29413/ABS.2023-8.6.14

Аннотация

Представлен критический анализ литературы о строении и свойствах альфа-синуклеина в физиологических условиях и в условиях патологии, когда изменяется конформация этого белка, что способствует его агрегации и изменению особенностей локализации в структурах головного мозга при таких нейродегенеративных заболеваниях, как болезнь Паркинсона, деменция с тельцами Леви, множественная системная атрофия и болезнь Альцгеймера.

Показано, что токсическое действие конформационно изменённого альфасинуклеина может опосредованно влиять на функции нейронов вследствие его взаимодействия с клетками нейроглии, в первую очередь с микроглией и астроцитами, а также может модулировать агрегацию и экспрессию других белков, функционально значимых для развития нейродегенерации.

Дальнейшее исследование механизмов взаимодействия конформационно измененного альфа-синуклеина с другими белками и уточнение взаимосвязи между его накоплением в структурах головного мозга и дисфункцией нейронов остаются актуальными для современной неврологии.

Поиск литературы проводился в базах данных «PubMed» и «eLIBRARY».

Об авторах

В. Н. Сальков
ФГБНУ «Научный центр неврологии»
Россия

Сальков Владимир Николаевич – доктор медицинских наук, старший научный сотрудник лаборатории нейроморфологии Института мозга 

125367, г. Москва, Волоколамское шоссе, 80



Д. Н. Воронков
ФГБНУ «Научный центр неврологии»
Россия

Воронков Дмитрий Николаевич – кандидат медицинских наук, старший научный сотрудник лаборатории нейроморфологии Института мозга 

125367, г. Москва, Волоколамское шоссе, 80



Список литературы

1. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021; 27(6): 954-963. doi: 10.1038/s41591-021-01382-x

2. GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(1): 88-106. doi: 10.1016/S1474-4422(18)30403-4

3. Trist BG, Hare DJ, Double KL. A proposed mechanism for neurodegeneration in movement disorders characterized by metal dyshomeostasis and oxidative stress. Cell Chem Biol. 2018; 25(7): 807-816. doi: 10.1016/j.chembiol.2018.05.004

4. Vaikath NN, Erskine D, Morris CM, Majbour NK, Vekrellis K, Li JY, et al. Heterogeneity in α-synuclein subtypes and their expression in cortical brain tissue lysates from Lewy body diseases and Alzheimer’s disease. Neuropathol Appl Neurobiol. 2019; 45(6): 597-608. doi: 10.1111/nan.12531

5. Pineda A, Burre J. Modulating membrane binding of alphasynuclein as a therapeutic strategy. Proc Natl Acad Sci U S A. 2017; 114: 1223-1225. doi: 10.1073/pnas.1620159114

6. Peng C, Gathagan RG, Lee VM-Y. Distinct α-synuclein strains and implications for heterogeneity among α-synucleinopathies. Neurobiol Dis. 2018; 109: 209-218. doi: 10.1016/j.nbd.2017.07.018

7. Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm. 2004; 111(10-11): 1219-1235. doi: 10.1007/s00702-004-0138-7

8. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. 2013; 28(6): 811-813. doi: 10.1002/mds.25421

9. Burre J, Sharma M, Südhof TC. Cell biology and pathophysiology of a-synuclein. Cold Spring Harb Perspect Med. 2018; 8: a024091. doi: 10.1101/cshperspect.a024091

10. Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM. A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. Biochemistry. 2014; 53(46): 7170-7183. doi: 10.1021/bi5009326

11. Breydo L, Wu JW, Uversky VN. Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta. 2012; 1822(2): 261-285. doi: 10.1016/j.bbadis.2011.10.002

12. Goedert M, Masuda-Suzukake M, Falcon B. Like prions: The propagation of aggregated tau and α-synuclein in neurodegeneration. Brain. 2017; 140(2): 266-278. doi: 10.1093/brain/aww230

13. Lee SJ, Desplats P, Sigurdson C, Tsigelny I, Masliah E. Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol. 2010; 6(12): 702-706. doi: 10.1038/nrneurol.2010.145

14. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell. 2013; 154(1): 103-117. doi: 10.1016/j.cell.2013.05.057

15. Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013; 14(9): 626-636. doi: 10.1038/nrn3549

16. Ayers JI, Lee J, Monteiro O, Woerman AL, Lazar AA, Condello C, et al. Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy. Proc Natl Acad Sci U S A. 2022; 119(6): e2113489119. doi: 10.1073/pnas.2113489119

17. Bartels T, Choi JG, Selkoe DJ. α-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011; 477(7362): 107-110. doi: 10.1038/nature10324

18. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A. 2011; 108(43): 17797-17802. doi: 10.1073/pnas.1113260108

19. Middleton ER, Rhoades E. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys J. 2010; 99(7): 2279-2288. doi: 10.1016/j.bpj.2010.07.056

20. Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE. Alpha-synuclein membrane interactions and lipid specificity. J Biol Chem. 2000; 275(44): 34328-34334. doi: 10.1074/jbc.M004345200

21. Jao CC, Hegde BG, Chen J, Haworth IS, Langen R. Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A. 2008; 105(50): 19666-19671. doi: 10.1073/pnas.0807826105

22. Trexler AJ, Rhoades E. Alpha-synuclein binds large unilamellar vesicles as an extended helix. Biochemistry. 2009; 48(11): 2304-2306. doi: 10.1021/bi900114z

23. Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, et al. Conversion of wild-type alpha-synuclein into mutanttype fibrils and its propagation in the presence of A30P mutant. J Biol Chem. 2009; 284(12): 7940-7950. doi: 10.1074/jbc.M807482200

24. Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, et al. Fibrillar a-synuclein toxicity depends on functional lysosomes. J Biol Chem. 2020; 295(51): 17497-17513. doi: 10.1074/jbc.RA120.013428

25. Bourdenx M, Nioche A, Dovero S, Arotcarena ML, Camus S, Porras G, et al. Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Sci Adv. 2020; 6(20): eaaz9165. doi: 10.1126/sciadv.aaz9165

26. Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, et al. α-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol. 2011; 194(1): 89-103. doi: 10.1083/jcb.201011118

27. Hatzakis NS, Bhatia VK, Larsen J, Madsen KL, Bolinger PY, Kunding AH, et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol. 2009; 5(11): 835-841. doi: 10.1038/nchembio.213

28. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alphasynuclein. J Biol Chem. 2011; 286(23): 20710-20726. doi: 10.1074/jbc.M110.213538

29. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010; 486(3): 235-239. doi: 10.1016/j.neulet.2010.09.061

30. Volles MJ, Lansbury PT Jr. Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol. 2007; 366(5): 1510-1522. doi: 10.1016/j.jmb.2006.12.044

31. Adamczyk A, Strosznajder JB. Alpha-synuclein potentiates Ca2+ influx through voltage-dependent Ca2+ channels. Neuroreport. 2006; 17(18): 188-1886. doi: 10.1097/WNR.0b013e3280115185

32. Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D. In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells. J Biol Chem. 2013; 288(9): 6371-6385. doi: 10.1074/jbc.M112.403311

33. Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: Is Parkinson’s disease a prion-like disorder? Mov Disord. 2013; 28(1): 31-40. doi: 10.1002/mds.25373

34. Wilkaniec A, Strosznajder JB, Adamczyk A. Toxicity of extracellular secreted alpha-synuclein: Its role in nitrosative stress and neurodegeneration. Neurochem Int. 2013; 62(5): 776-783. doi: 10.1016/j.neuint.2013.02.004

35. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000; 287(5456): 1265-1269. doi: 10.1126/science.287.5456.1265

36. Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med. 2002; 32(11): 1076-1083. doi: 10.1016/s0891-5849(02)00801-8

37. Nakamura T, Lipton SA. According to GOSPEL: Filling in the GAP(DH) of NO-mediated neurotoxicity. Neuron. 2009; 63(1): 3-6. doi: 10.1016/j.neuron.2009.06.013

38. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000; 290(5493): 985-989. doi: 10.1126/science.290.5493.985

39. Bendor JT, Logan TP, Edwards RH. The function of asynuclein. Neuron. 2013; 79(6): 1044-1066. doi: 10.1016/j.neuron.2013.09.004

40. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013; 136(8): 2419-2431. doi: 10.1093/brain/awt192

41. Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG. Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 2012; 124(5): 665-680. doi: 10.1007/s00401-012-1040-2

42. Matsuoka Y, Vila M, Lincoln S, McCormack A, Picciano M, LaFrancois J, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis. 2001; 8(3): 535-539. doi: 10.1006/nbdi.2001.0392

43. Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol. 2009; 68(7): 816-822. doi: 10.1097/NEN.0b013e3181ac10a7

44. Иллариошкин С.Н., Власенко А.Г., Федотова Е.Ю. Современные возможности идентификации латентной стадии нейродегенеративного процесса. Анналы клинической и экспериментальной неврологии. 2013; 7(2): 39-50.

45. Худоерков Р.М., Воронков Д.Н., Богданов Р.Р., Соболев В.Б., Борисова С.Ю., Давыдов И.А., и др. Исследование α-синуклеина в биоптатах подъязычных слюнных желез при болезни Паркинсона. Неврологический журнал. 2016; 21(3): 152-157. doi: 10.18821/1560-9545-2016-21-3-152-157

46. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003; 24(2): 197-211. doi: 10.1016/s0197-4580(02)00065-9

47. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: A dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007; 33(6): 599-614. doi: 10.1111/j.1365-2990.2007.00874.x

48. Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: How far can it explain the pathogenesis of Parkinson’s disease? Expert Rev Neurother. 2012; 12(6): 673-686. doi: 10.1586/ern.12.47

49. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, et al. Detection of oligomeric forms of alphasynuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 2006; 20(3): 419-425. doi: 10.1096/fj.03-1449com

50. Braak H, Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: Separating the wheat from the chaff. J Parkinsons Dis. 2017; 7(1): 71-85. doi: 10.3233/JPD-179001

51. Orimo S, Uchihara T, Nakamura A, Mori F, Ikeuchi T, Onodera O, et al. Cardiac sympathetic denervation in Parkinson’s disease linked to SNCA duplication. Acta Neuropathol. 2008; 116(5): 575-577. doi: 10.1007/s00401-008-0428-5

52. Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L. Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov Disord. 2011; 26(3): 416-423. doi: 10.1002/mds.23468

53. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002; 99(16): 10813-10818. doi: 10.1073/pnas.152339799

54. Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, et al. Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alphasynuclein. Glia. 2007; 55(11): 1178-1188. doi: 10.1002/glia.20532

55. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, et al. Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson’s disease. FASEB J. 2005; 19(6): 533-542. doi: 10.1096/fj.04-2751com

56. Катунина Ю.А., Бездольный Ю.Н. Эпидемиология болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013; 113(12): 81-88.

57. Walker L, Stefanis L, Attems J. Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies – Current issues and future directions. J Neurochem. 2019; 150(5): 467-474. doi: 10.1111/jnc.14698

58. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017; 89(1): 88-100. doi: 10.1212/WNL.0000000000004058

59. Jellinger KA. Dementia with Lewy bodies and Parkinson’s disease-dementia: Current concepts and controversies. J Neural Transm. 2018; 125: 615-650. doi: 10.1007/s00702-017-1821-9

60. Kovari E, Horvath J, Bouras C. Neuropathology of Lewy body disorders. Brain Res Bull. 2009; 80: 203-210. doi: 10.1016/j.brainresbull.2009.06.018

61. Tsuboi Y, Dickson DW. Dementia with Lewy bodies and Parkinson’s disease with dementia: Are they different? Parkinsonism Relat Disord. 2005; 11(1): 47-51. doi: 10.1016/j.parkreldis.2004.10.014

62. Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med. 2012; 2(8): a009258. doi: 10.1101/cshperspect.a009258

63. Lantos PL. The definition of multiple system atrophy: A review of recent developments. J Neuropathol Exp Neurol. 1998; 57(12): 1099-1111. doi: 10.1097/00005072-199812000-00001

64. Papp MI, Lantos PL. The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain. 1994; 117: 235-243. doi: 10.1093/brain/117.2.235

65. Wenning G, Tison F, Ben Shlomo Y, Daniel S, Quinn N. Multiple system atrophy: A review of 203 pathologically proven cases. Mov Disord. 1997; 12: 133-147. doi: 10.1002/mds.870120203

66. Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther. 2014; 6(5): 73. doi: 10.1186/s13195-014-0073-2

67. Lee HJ, Suk JE, Bae EJ, Lee SJ. Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun. 2008; 372: 423-428. doi: 10.1016/j.bbrc.2008.05.045

68. Ruf WP, Meirelles JL, Danzer KM. Spreading of alphasynuclein between different cell types. Behav Brain Res. 2023; 436: 114059. doi: 10.1016/j.bbr.2022.114059

69. Postina R. A closer look at alpha-secretase. Curr Alzheimer Res. 2008; 5(2): 179-186. doi: 10.2174/156720508783954668

70. Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ. Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol. 1999; 45(3): 353-357. doi: 10.1002/1531-8249(199903)45:3<353::aidana11>3.0.co;2-4

71. Toledo JB, Cairns NJ, Da X, Chen K, Carter D, Fleisher A, et al. Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathol Commun. 2013; 1: 65. doi: 10.1186/2051-5960-1-65

72. Iseki E. Dementia with Lewy bodies: Reclassification of pathological subtypes and boundary with Parkinson’s disease or Alzheimer’s disease. Neuropathology. 2004; 24(1): 72-78. doi: 10.1111/j.1440-1789.2003.00530.x

73. Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: A pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. Alzheimers Res Ther. 2022; 14(1): 201. doi: 10.1186/s13195-022-01150-0

74. Bassil F, Meymand ES, Brown HJ, Xu H, Cox TO, Pattabhiraman S, et al. α-synuclein modulates tau spreading in mouse brains. J Exp Med. 2021; 218(1): e20192193. doi: 10.1084/jem.20192193


Рецензия

Для цитирования:


Сальков В.Н., Воронков Д.Н. Накопление агрегированного альфасинуклеина в структурах нервной ткани при нейродегенеративных заболеваниях. Acta Biomedica Scientifica. 2023;8(6):153-161. https://doi.org/10.29413/ABS.2023-8.6.14

For citation:


Salkov V.N., Voronkov D.N. Accumulation of aggregated alpha-synuclein in neural tissue structures in neurodegenerative diseases. Acta Biomedica Scientifica. 2023;8(6):153-161. https://doi.org/10.29413/ABS.2023-8.6.14

Просмотров: 849


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)