Preview

Acta Biomedica Scientifica

Advanced search

Genetic heterogeneity of Rickettsia helvetica population

https://doi.org/10.29413/ABS.2023-8.6.8

Abstract

Background. To date, the genetic variability of Rickettsia helvetica has not been sufficiently studied.

The aim. To study the prevalence and genetic variability of R. helvetica in Ixodes spp. collected in Western Siberia and the Russian Far East.

Materials and methods. Ixodes  spp. collected from rodents in the Omsk province, Western Siberia (n = 280) and collected by flagging on Putyatin and Russky Islands in Primorsky Krai, Russian Far East (n = 482) were analyzed for the presence of Rickettsia spp. All positive samples were genotyped for the gltA gene fragment. For a number of R. helvetica samples, fragments of the 16S rRNA, ompA, ompB, sca4, htrA, and groEL genes and 23S–5S intergenic spacer were additionally sequenced.

Results. Four Rickettsia species (R. helvetica, “Candidatus Rickettsia tarasevichiae”, “Candidatus Rickettsia uralica”, and “Candidatus Rickettsia mendelii”) were found. Of them, R. helvetica was identified in 72.2 % of Ixodes apronophorus and 18.8 % of  Ixodes trianguliceps from the Omsk province and in single Ixodes persulcatus from the Omsk province and Putyatin Island. This is the first finding of Rickettsia spp. in I. apronophorus. All known R. helvetica sequences from this study and the GenBank database belonged to four well supported monopheletic groups forming genetic lineages I–IV. Lineage I included European isolates from Ixodes ricinus, Western Siberian isolates from I. persulcatus, and some sequences from I. apronophorus. All R. helvetica sequences from I. trianguliceps from the Omsk province and I. persulcatus from  the  Komi Republic and one sequence from I.  apronophorus were assigned to  lineage  II. Most sequences from I.  apronophorus formed lineage  III; all known R. helvetica sequences from I. persulcatus from the Far East formed genetic lineage IV.

Conclusion. The genetic heterogeneity of R. helvetica population was first demonstrated. Known isolates of R. helvetica are reliably assigned to four genetic lineages, but not in all cases the association of different lineages with a specific tick species or specific territory was observed.

About the Authors

V. A. Rar
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vera A. Rar – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Molecular Microbiology 

Lavrentyeva Ave. 8, Novosibirsk 630090



Ya. P. Igolkina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yana P. Igolkina – Cand. Sc. (Biol.), Junior Research Officer at the Laboratory of Molecular Microbiology 

Lavrentyeva Ave. 8, Novosibirsk 630090



V. V. Yakimenko
Omsk Research Institute of Natural Focal Infections
Russian Federation

Valeriy V. Yakimenko – Dr. Sc. (Biol.), Chief Research Officer, Head of the Laboratory of Arbovirus Infections of the Department of Natural Focal Viral Infections 

Mira Ave. 7, Omsk 644080



A. Yu. Tikunov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Artem Yu. Tikunov – Cand. Sc. (Biol.), Senior Research Officer, Head of the Laboratory of Antimicrobials 

Lavrentyeva Ave. 8, Novosibirsk 630090



A. Ya. Nikitin
Irkutsk Antiplague Research Institute of Siberia and Far East of Rospotrebnadzor
Russian Federation

Aleksey Yu. Nikitin – Dr. Sc. (Biol.), Leading Research Officer at the Zoological and Parasitological Department 

Trilissera str. 78, Irkutsk 664047



T. I. Epikhina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Tamara I. Epikhina – Lead Engineer at the Laboratory of Molecular Microbiology 

Lavrentyeva Ave. 8, Novosibirsk 630090



N. V. Tikunova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Nina V. Tikunova – Dr. Sc. (Biol.), Chief Research Officer, Head of the Laboratory of Molecular Microbiology 

Lavrentyeva Ave. 8, Novosibirsk 630090



References

1. Fournier PE, Grunnenberger F, Jaulhac B, Gastinger G, Raoult D. Evidence of Rickettsia helvetica infection in humans, eastern France. Emerg Infect Dis. 2000; 6(4): 389-392. doi: 10.3201/eid0604.000412

2. Fournier PE, Allombert C, Supputamongkol Y, Caruso G, Brouqui P, Raoult D. Aneruptive fever associated with antibodies to Rickettsia helvetica in Europe and Thailand. J Clin Microbiol. 2004; 42(2): 816-818. doi: 10.1128/JCM.42.2.816-818.2004

3. Nilsson K, Lindquist O, Påhlson C. Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet. 1999; 354(9185): 1169-1173. doi: 10.1016/S0140-6736(99)04093-3

4. Nilsson K, Påhlson C, Lukinius A, Eriksson L, Nilsson L, Lindquist O. Presence of Rickettsia helvetica in granulomatous tissue from patients with sarcoidosis. J Infect Dis. 2002; 185(8): 1128-1138. doi: 10.1086/339962

5. Nilsson K, Elfving K, Pahlson C. Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis. 2010; 16(3): 490-492. doi: 10.3201/eid1603.090184

6. Nefedova VV, Korenberg EI, Kovalevskii YV, Vorobyeva NN. Microorganisms of the order Rickettsiales in taiga tick (Ixodes persulcatus Sch.) from the Pre-Ural region. Annals of the Russian Academy of Medical Sciences. 2008; 7: 47-50. (In Russ.).

7. Silaghi C, Gilles J, Höhle M, Pradel I, Just FT, Fingerle V, et al. Prevalence of spotted fever group rickettsiae in Ixodes ricinus (Acari: Ixodidae) in southern Germany. J. Med. Entomol. 2008; 45: 948–955. doi: 10.1603/0022-2585(2008)45[948:posfgr]2.0.co;2

8. Stanko M, Derdáková M, Špitalská E, Kazimírová M. Ticks and their epidemiological role in Slovakia: From the past till present. Biologia (Bratisl). 2022; 77(6): 1575-1610. doi: 10.1007/s11756-021-00845-3

9. Kartashov MY, Glushkova LI, Mikryukova TP, Korabelnikov IV, Egorova YI, Tupota NL, et al. Detection of Rickettsia helvetica and Candidatus R. tarasevichiae DNA in Ixodes persulcatus ticks collected in Northeastern European Russia (Komi Republic). Ticks Tick Borne Dis. 2017; 8: 588-592. doi: 10.1016/j.ttbdis.2017.04.001

10. Shpynov SN, Fournier PE, Rudakov NV, Samoilenko IE, Reshetnikova TA, Yastrebov VK, et al. Molecular identification of a collection of spotted Fever group rickettsiae obtained from patients and ticks from Russia. Am J Trop Med Hyg. 2006; 74(3): 440-443.

11. Rakov AV, Chekanova TA, Petremgvdlishvili K, Timonin AV, Valdokhina AV, Shirokostup SV, et al. High prevalence of Rickettsia raoultii found in Dermacentor ticks collected in Barnaul, Altai Krai, Western Siberia. Pathogens. 2023; 12(7): 914. doi: 10.3390/pathogens12070914

12. Rar V, Livanova N, Sabitova Y, Igolkina Y, Tkachev S, Tikunov A, et al. Ixodes persulcatus/pavlovskyi natural hybrids in Siberia: Occurrence in sympatric areas and infection by a wide range of tick-transmitted agents. Ticks Tick Borne Dis. 2019; 10(6): 101254. doi: 10.1016/j.ttbdis.2019.05.020

13. Pukhovskaia NM, Rar VA, Ivanov LI, Vysochina NP, Igolkina IaP, Fomenko NV, et al. PCR detection of the causative agents ofinfections transmitted by ticks on the Kamchatka Peninsula. Meditsinskaya parazitologiya i parazitarnye bolezni. 2010; 4: 36-39. (In Russ.).

14. Igolkina Y, Bondarenko E, Rar V, Epikhina T, Vysochina N, Pukhovskaya N, et al. Genetic variability of Rickettsia spp. in Ixodes persulcatus ticks from continental and island areas of the Russian Far East. Ticks Tick Borne Dis. 2016; 7: 1284-1289. doi: 10.1016/j.ttbdis.2016.06.005

15. Malkova MG, Bogdanov II Parasite fauna of the water vole Arvicola terrestris and its nests in south of Western Siberia. Parazitologiya. 2004; 38: 33-45. (In Russ.).

16. Karimov AV, Korallo-Vinarskaya NP, Kuzmenko YF, Vinarski MV. Ixodes apronophorus Schulze (Acari: Ixodida: Ixodidae): Distribution, abundance, and diversity of its mammal hosts in West Siberia (Results of a 54-year long surveillance). Diversity. 2022; 14: 702. doi: 10.3390/d14090702

17. Yakimenko VV, Malkova MG, Shpynov SN. Ixodid ticks of the Western Siberia: Fauna, ecology, basic research methods. Omsk; 2013. (In Russ.).

18. Nowak-Chmura M, Siuda K. Ticks of Poland. Review of contemporary issues and latest research. Ann Parasitol. 2012; 58(3): 125-55.

19. Igolkina YP, Rar VA, Yakimenko VV, Malkova MG, Tancev AK, Tikunov AY, et al. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: Identification of a new Candidatus Rickettsia species. Infect Genet Evol. 2015; 34: 88-93. doi: 10.1016/j.meegid.2015.07.015

20. Rar V, Yakimenko V, Tikunov A, Vinarskaya N, Tancev A, Babkin I, et al. Genetic and morphological characterization of Ixodes apronophorus from Western Siberia, Russia. Ticks and Tick-Borne Diseases. 2020; 11(1): 101284. doi: 10.1016/j.ttbdis.2019.101284

21. Filippova NA. Ixodid ticks of the subfamily Ixodinae. Leningrad: Nauka; 1977. (In Russ.).

22. Fournier PE, Roux V, Raoult D. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol. 1998; 48 (3): 839-849. doi: 10.1099/00207713-48-3-839

23. Roux V, Raoult D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol. 2000; 50: 1449-1455. doi: 10.1099/00207713-50-4-1449

24. Sekeyova Z, Roux V, Raoult D. Phylogeny of Rickettsia spp. inferred by comparing sequences of ‘gene D’, which encodes an intracytoplasmic protein. Int J Syst Evol Microbiol. 2001; 51(4): 1353-1360. doi: 10.1099/00207713-51-4-1353

25. Matsumoto K, Inokuma H. Identification of spotted fever group Rickettsia species by polymerase chain reaction-restriction fragment length polymorphism analysis of the sca4 gene. Vector Borne Zoonotic Dis. 2009; 9(6): 747-749. doi: 10.1089/vbz.2008.0098

26. Labruna MB, McBride JW, Bouyer DH, Camargo LM, Camargo EP, Walker DH. Molecular evidence for a spotted fever group Rickettsia species in the tick Amblyomma longirostre in Brazil. J Med Entomol. 2004; 41(3): 533-537. doi: 10.1603/0022-2585-41.3.533

27. Jado I, Escudero R, Gil H, Jiménez-Alonso MI, Sousa R, García-Pérez AL, et al. Molecular method for identification of Rickettsia species in clinical and environmental samples. J Clin Microbiol. 2006; 44(12): 4572-4576. doi: 10.1128/JCM.01227-06

28. Shao JW, Zhang XL, Li WJ, Huang HL, Yan J. Distribution and molecular characterization of rickettsiae in ticks in Harbin area of Northeastern China. PLoS Negl Trop Dis. 2020; 14(6): e0008342. doi: 10.1371/journal.pntd.0008342

29. National Library of Medicine. Basic Local Alignment Search Tool. URL: http://www.ncbi.nlm.nih.gov/BLAST [date of access: 05.09.2023].

30. Molecular Evolutionary Genetics Analysis. URL: http://www.megasoftware.net/manual.html [date of access: 05.09.2023].

31. Kumar Lab – Laboratory of Sudhir Kumar. URL: http://www.kumarlab.net/publications [date of access: 05.09.2023].

32. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin Microbiol Rev. 2013; 26(4): 657-702. doi: 10.1128/CMR.00032-13

33. Moraes-Filho J, Costa FB, Gerardi M, Soares HS, Labruna MB. Rickettsia rickettsii co-feeding transmission among Amblyomma aureolatum ticks. Emerg Infect Dis. 2018; 24(11): 2041-2048. doi: 10.3201/eid2411.180451


Review

For citations:


Rar V.A., Igolkina Ya.P., Yakimenko V.V., Tikunov A.Yu., Nikitin A.Ya., Epikhina T.I., Tikunova N.V. Genetic heterogeneity of Rickettsia helvetica population. Acta Biomedica Scientifica. 2023;8(6):91-104. https://doi.org/10.29413/ABS.2023-8.6.8

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)