Preview

Acta Biomedica Scientifica

Advanced search

Antimicrobial potential of iodine-containing substances and materials

https://doi.org/10.29413/ABS.2023-8.5.4

Abstract

Despite the search and development of new antimicrobial drugs with antibiotic or antiseptic properties, the spread of multidrug-resistant strains of microorganisms remains a serious problem in the treatment and prevention of infectious diseases (wound, postoperative and burn infections, preoperative preparation of the surgical and injection fields, hygienic disinfection of the hands of surgeons, medical personnel, etc.). This review of modern domestic and foreign literature sources is devoted to the analysis of data on the prospects of using antiseptics with iodine and iodides as antimicrobial agents. In modern conditions, there is an increasing number of scientific works devoted to the study and development of various drugs, distinguished by their diversity and their specific application. Antimicrobial iodine-containing compounds can be applied to a wide range of  materials such as textile, plastics, metals, ceramics to make them resistant to microbial and biofilm growth. The article summarized the literature data on the high antimicrobial activity of  iodine both in neutral carriers and in synergy with substances already possessing similar properties. Such complex preparations lose their toxicity to a large extent, having prolonged action with the preservation of their properties. The main mechanisms of antimicrobial action of iodine and iodine compounds are determined by their strong oxidizing ability. Attention is drawn to the spectrum of activity of iodine preparations. Along with the antimicrobial effect, they can promote regeneration processes. In general, innovative iodine preparations with antibacterial and fungicidal properties are promising for medical and other purposes.

About the Authors

A. V. Nevezhina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Anna V. Nevezhina – Junior Research Officer at the Laboratory of Cell Technologies and Regenerative Medicine 

Bortsov Revolyutsii str. 1, Irkutsk 664003



T. V. Fadeeva
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Tatiana  V. Fadeeva – Dr.  Sc. (Biol.), Leading Research Officer at the Laboratory of Cell Technologies and Regenerative Medicine 

Bortsov Revolyutsii str. 1, Irkutsk 664003



References

1. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020; 25(6): 1340. doi: 10.3390/molecules25061340

2. Ardila CM, Bedoya-García JA. Bacterial resistance to antiseptics used in dentistry: A systematic scoping review of randomized clinical trials. Int J Dent Hyg. 2023; 21(1): 141-148. doi: 10.1111/idh.12629

3. Rozman U, Pušnik M, Kmetec S, Duh D, Šostar Turk S. Reduced susceptibility and increased resistance of bacteria against disinfectants: A systematic review. Microorganisms. 2021; 9(12): 2550. doi: 10.3390/microorganisms9122550

4. Sum S, Park HM, Oh JY. High-level mupirocin resistance in Gram-positive bacteria isolated from diseased companion animals. J Vet Sci. 2020; 21(3): 40. doi: 10.4142/jvs.2020.21.e40

5. World Health Organization. Antimicrobial resistance. 2021. URL: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [date of access: 15.05.2023].

6. Imran M, Jha SK, Hasan N, Insaf A, Shrestha J, Shrestha J, et al. Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics. 2022; 14(3): 586. doi: 10.3390/pharmaceutics14030586

7. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019; 8: 76. doi: 10.1186/s13756-019-0533-3

8. Barakat NA, Rasmy SA, Hosny AEDMS, Mona T. Kashef MT. Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus. Antimicrob Resist Infect Control. 2022; 11: 139. doi: 10.1186/s13756-022-01178-9

9. Odlaug TE. Antimicrobial activity of halogens. J Food Protect. 1981; 44(8): 608-613. doi: 10.4315/0362-028X-44.8.608

10. Amachi S. Microbial contribution to global iodine cycling: Volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ. 2008; 23(4): 269-276. doi: 10.1264/jsme2.me08548

11. Espino-Vázquez AN, Rojas-Castro FC, Fajardo-Yamamoto LM. Implications and practical applications of the chemical speciation of iodine in the biological context. Future Pharmacol. 2022; 2(4): 377-414. doi: 10.3390/futurepharmacol2040026

12. Greenwood NN, Earnshaw A. The halogens: Fluorine, chlorine, bromine, iodine and astatine. Chemistry of the elements. Butterworth-Heinemann; 1997: 789-887. doi: 10.1016/b978-0-7506-3365-9.50023-7

13. Molchanova N, Nielsen JE, Sørensen KB, Prabhala BK, Hansen PR, Lund R, et al. Halogenation as a tool to tune antimicrobial activity of peptoids. Sci Rep. 2020; 10(1): 14805. doi: 10.1038/s41598-020-71771-8

14. Edis Z, Haj Bloukh S, Abu Sara H, Bhakhoa H, Rhyman L, Ramasami P. “Smart” triiodide compounds: Does halogen bonding influence antimicrobial activities? Pathogens. 2019; 8(4): 182. doi: 10.3390/pathogens8040182

15. Dattilo S, Spitaleri F, Aleo D, Saita MG, Patti A. Solid-state preparation and characterization of 2-hydroxypropylcyclodextrinsiodine complexes as stable iodophors. Biomolecules. 2023; 13(3): 474. doi: 10.3390/biom13030474

16. Han X, Boix G, Balcerzak M, Moriones OH, Cano-Sarabia M, Cortés P, et al. Antibacterial films based on MOF composites that release iodine passively or upon triggering by near-infrared light. Adv Funct Mater. 2022; 32(19): 2112902. doi: 10.1002/adfm.202112902

17. Li R, Wang Z, Lian X, Hu X, Wang Y. Antimicrobial rubber nanocapsule-based iodophor promotes wound healing. Chin Chem Soc. 2020; 2(2): 245-256. doi: 10.31635/ccschem.020.201900101

18. Artasensi A, Mazzotta S, Fumagalli L. Back to basics: Choosing the appropriate surface disinfectant. Antibiotics. 2021; 10: 613. doi: 10.3390/antibiotics10060613

19. Cooper RA. Iodine revisited. Int Wound J. 2007; 4(2): 124-137. doi: 10.1111/j.1742-481X.2007.00314.x

20. Kaiho T (ed.). Physical properties of iodine. Iodine chemistry and applications. John Wiley & Sons, Inc; 2015. doi: 10.1002/9781118909911

21. Makhayeva DN, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors: Preparation, properties, and biomedical applications. Rev J Chem. 2020; 10(1): 40-57. doi: 10.1134/S2079978020010033

22. Enoktaeva OV, Nikolenko MV, Trushnikov DYu, Baryshnikova NV, Solovieva SV. Fungal biofilms formation mechanism of the genus Candida fungi in candida infection (literature review). Problems in Medical Mycology. 2021; 23(4): 3-8. (In Russ.). doi: 10.24412/1999-6780-2021-4-3-8

23. Cuellar-Rufino S, Arroyo-Xochihua O, Salazar-Luna A, Arroyo-Helguera O. Iodine induces toxicity against Candida albicans and Candida glabrata through oxidative stress. Iranian Journal of Microbiology. 2022; 14(2): 260-267. doi: 10.18502/ijm.v14i2.9195

24. Sidahmed MS, Nimir AHH. Effect of peptone on the antifungal activity of povidone iodine. IntJ Curr Microbiol Appl Sci. 2020; 9(12): 1798-1802. doi: 10.20546/ijcmas.2020.912.213

25. Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020; 25(12): 2888. doi: 10.3390/molecules25122888

26. Szymanski CM. Bacterial glycosylation, it’s complicated. Front Mol Biosci. 2022; 9: 1015771. doi: 10.3389/fmolb.2022.1015771

27. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003; 67(4): 93-656. doi: 10.1128/MMBR.67.4.593-656.2003

28. Edis Z, Raheja R, Bloukh SH, Bhandare RR, Sara HA, Reiss GJ. Antimicrobial hexaaquacopper (II) complexes with novel polyiodide chains. Polymers. 2021; 13(7): 1005. doi: 10.3390/polym13071005

29. Liu J, Mao C, Dong L, Kang P, Ding C, Zheng T, et al. Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto’s thyroiditis through the ROS-NF-κB-NLRP3 pathway. Front Endocrinol. 2019; 10: 778. doi: 10.3389/fendo.2019.00778

30. Valduga G, Bertoloni G, Reddi E, Jori G. Effect of extracellularly generated singlet oxygen on gram-positive and gramnegative bacteria. J Photochem Photobiol B Biol. 1993; 21(1): 81-86. doi: 10.1016/1011-1344(93)80168-9

31. Popov IV, Safronenko AV, Mazanko MS, Tyaglivy AS, Golovin SN, Popov IV, et al. History of the application of iodine-containing substances in asepsis and antisepsis. Russian Journal of Veterinary Pathology. 2021; 4: 76-83. doi: 10.25690/VETPAT.2021.10.92.001

32. Barreto R, Barrois B, Lambert J, Malhotra-Kumar S, SantosFernandes V, Monstrey S. Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents. 2020; 56(3): 106064. doi: 10.1016/j.ijantimicag.2020.106064

33. Ferguson AW, Scott JA, McGavigan J, Elton RA, McLean J, Schmidt U, et al. Comparison of 5% povidone-iodine solution against 1% povidone-iodine solution in preoperative cataract surgery antisepsis: A prospective randomised double blind study. Br J Ophthalmol. 2003; 87(2): 163-167. doi: 10.1136/bjo.87.2.163

34. Thakur SS, Bai A, Chan D, Lu J, Lu M, Su A, et al. Ex vivo evaluation of the influence of pH on the ophthalmic safety, antibacterial efficacy and storage stability of povidone-iodine. Clin Experim Optometry. 2021; 104(2): 162-166. doi: 10.1111/cxo.13100

35. Borisov IV. Povidone iodine – new possibilities of a familiar dressing (literature review). Wounds and Wound Infections. The prof. B.M. Kostyuchenok Journal. 2021; 8(3): 14-20. (In Russ.).

36. Morozov AM, Sergeev AN, Morozova AD, Rachek AM, Kurkova VV, Semenova SM, et al. On the possibility of use of adhesive surgical drapes. Bulletin of Contemporary Clinical Medicine. 2022; 15(4): 86-93. (In Russ.). doi: 10.20969/VSKM.2022.15(4).86-93

37. García-Álvarez R, Vallet-Regí M. Hard and soft protein corona of nanomaterials: Analysis and relevance. Nanomaterials. 2021; 11(4): 888. doi: 10.3390/nano11040888

38. Li X, Wang B, Liang T, Wang R, Song P, He Y. Synthesis of cationic acrylate copolyvidone-iodine nanoparticles with double active centers and their antibacterial application. Nanoscale. 2020; 12(42): 21940-21950. doi: 10.1039/d0nr05462c

39. Tonoyan L, Fleming GTA, McCay PH, Friel R, O’Flaherty V. Antibacterial potential of an antimicrobial agent inspired by peroxidase-catalyzed systems. Front Microbiol. 2017; 8: 680. doi: 10.3389/fmicb.2017.00680

40. Lundin JG, McGann CL, Weise NK, Estrella LA, Balow RB, Streifel BC, et al. Iodine binding and release from antimicrobial hemostatic polymer foams. React Funct Polym. 2019; 135: 44-51. doi: 10.1016/j.reactfunctpolym.2018.12.009

41. Nechaeva OV, Tikhomirova EI, Zayarsky DA, Bespalova NV, Glinskaya EV, Shurshalova NF, et al. Anti-biofilm activity of polyazolidinammonium modified with iodine hydrate ions against microbial biofilms of uropathogenic coliform bacteria. Bulletin of Experimental Biology and Medicine. 2017; 162(6): 781-783. doi: 10.1007/s10517-017-3712-3

42. Nechaeva OV, Tikhomirova EI, Zayarsky DA, Vakaraeva MM. Antimicrobial activity of polyazolidinammonium modified with hydrate-ions of iodine. Journal of Microbiology, Epidemiology and Immunobiology. 2015; 92(3): 88-92. (In Russ.).

43. Verkhovsky RA, Nechaeva OV, Tikhomirova EI. Evaluation of the action of polymer connection on the process of formation of microbial biofiles by Pseudomonas aeruginosa. Bacteriology. 2018; 3(1): 63-66. doi: 10.20953/2500-1027-2018-1-63-66 (In Russ.).

44. Kristinsson KG, Jansen B, Treitz U, Schumacher-Perdreau F, Peters G, Pulverer G. Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone. J Biomater Appl. 1991; 5(3): 173-184. doi: 10.1177/088532829100500303

45. Khoerunnisa F, Rahmah W, Seng Ooi B, Dwihermiati E, Nashrah N, Fatimah S, et al. Chitosan/PEG/MWCNT/Iodine composite membrane with enhanced antibacterial properties for dye wastewater treatment. J Environ Chem Eng. 2020; 8(2): 103686. doi: 10.1016/j.jece.2020.103686

46. Tang Y, Xie L, Sai M, Xu N, Ding D. Preparation and antibacterial activity of quaternized chitosan with iodine. Mater Sci Eng C Mater Biol Appl. 2015; 48: 1-4. doi: 10.1016/j.msec.2014.11.019

47. Mirzakhidova MM, Gafurova DA. Composite materials based on iodine-containing polymers. Universum: Technical Sciences. 2022; 7(100): 17-20. (In Russ.).

48. Sharma R, Pahwa R, Ahuja M. Iodine‐loaded poly(silicic acid) gellan nanocomposite mucoadhesive film for antibacterial application. J Appl Polymer Sci. 2020; 38(2): 49679. doi: 10.1002/app.49679

49. Sharipova SG, Ponamarev EE, Ershova NR, Mudarisova RH, Kulish EI. Immobilization of iodine on a chitosan matrix. Bulletin of Bashkir University. 2010; 15(4): 1122-1123. (In Russ.).

50. Dideikin AT, Vul’ AY. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 2019; 6: 149. doi: 10.3389/fphy.2018.00149

51. Narayanan KB, Park GT, Han SS. Antibacterial properties of starch-reduced graphene oxide-polyiodide nanocomposite. Food Chem. 2021; 342: 128385. doi: 10.1016/j.foodchem.2020.128385

52. Belova VV, Zakharova OV, Stolyarov RA, Gusev AA, Vasyukova IA, Baranchikov PA, et al. Antibacterial and cytotoxic effects of Multi-walled carbon nanotubes functionalized with iodine. Nanobiotechnology Reports. 2022; 17: 184-192. doi: 10.1134/S2635167622020033

53. Zubenko AA, Fetisov LN, Kononenko KN, Svyatogorova AE, Andros NO. Antimicrobial activity of iodine adsorbed on activated carbon. Veterinariya Severnogo Kavkaza. 2022; 3: 27-33. (In Russ.).

54. Mohan A, Al-Sayah MH, Ahmed A, El-Kadri МO. Triazinebased porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci Rep. 2022; 12(1): 2638. doi: 10.1038/s41598-022-06671-0

55. Tantsyrev AP, Fadeeva TV, Nevezhina AV, Shurygina IA, Titova YuYu, Ivanov AV, et al. Method for obtaining iodine-containing arabinogalactan composites with antimicrobial and antifungal properties: Patent No. 2795219 of the Russian Federation. 2023; (3). (In Russ.).

56. Strekalovskaya EI, Zvyagintseva ND, Tantsyrev AP, Bukovskaya NE, Balkhanova TI. Comparative characteristics of the antibacterial effect of iodine and tellurium nanoparticles on gram-negative microorganisms (using the example of Escherichia coli) as a promising alternative to antimicrobial drugs. Materialy VII Pushchinskoy konferentsii “Biokhimiya, fiziologiya i biosfernaya rol’ mikroorganizmov”, shkoly-konferentsii dlya molodykh uchenykh, aspirantov i studentov “Geneticheskie tekhnologii v mikrobiologii i mikrobnoe raznoobrazie”. Moscow: GEOS; 2021: 91-93. (In Russ.). doi: 10.34756/GEOS.2021.17.37922

57. Mudarisova RKh, Sagitova AF, Kukovinets OS, Kolesov SV. Intermolecular interactions of iodine with low methoxylated apple pectin modified with pharmacophores. Polymer Science. 2023; 65(1): 28-36. (In Russ.).

58. Kostin VI, Mikheeva LA, Chernookaya EV. The use of pectin from amaranth to obtain complex compounds of copper and iodine. Netraditsionnye prirodnye resursy, innovatsionnye tekhnologii i produkty: Sbornik nauchnykh trudov. 2012; 20: 173-176. (In Russ.).

59. Sabitov AN, Turganbay S, Jumagaziyeva AB. Structure and properties of the di-((2s)-2-amino-3-(1h-indol-3-yl)propionate) dihydrotetraiodide. Chemical Journal of Kazakhstan. 2021; 2(74): 87-103. doi: 10.51580/2021-1/2710-1185.31

60. Au-Duong AN, Lee CK. Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Mat Sci Engineer CMat Biol Appl. 2017; 76: 477-482. doi: 10.1016/j.msec.2017.03.114

61. Yamaguchi S, Le PTM, Shintani SA, Takadama H, Ito M, Ferraris S, Spriano S. Iodine-loaded calcium titanate for bone repair with sustainable antibacterial activity prepared by solution and heat treatment. Nanomaterials. 2021; 11(9): 2199. doi: 10.3390/nano11092199

62. Ong K, Yun M, White J. New biomaterials for orthopedic implants. Orthop Res Rev. 2015; 7: 107-130. doi: 10.2147/ORR.S63437

63. Kannan M, Rajarathinam K, Venkatesan S, Dheeba B, Maniraj A. Nanostructures for antimicrobial therapy. Silver Iodide Nanoparticles as an Antibiofilm Agent – ACase Study onGram-Negative Biofilm-Forming Bacteria. Elsevier; 2017: 435-456. doi: 10.1016/B978-0-323-46152-8.00019-6

64. Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces. 2012; 96: 50-55. doi: 10.1016/j.colsurfb.2012.03.021

65. Montazerozohori M, Khadem Z, Masoudiasl A, Naghiha R, Ghanbari S, Doert Th. A zinc iodide complex with two-dimensional supra-molecular network: new antimicrobial four coordinated zinc complexes. Journal of the Iranian Chemical Society. 2016; 13: 779-791. doi: 10.1007/s13738-015-0791-9

66. Krasochko PA, Shiyonok MA, Ponaskov MA. Antibacterial activity of a complex compound based on silver and iodine. Uchenye zapiski UO VGAVM. 2020; 56(1): 61-64. (In Russ.).

67. Aoki S, Yamakawa K, Kubo K, Takeshita J, Takeuchi M, Nobuoka Y, et al. Antibacterial properties of silicone membranes after a simple two-step immersion process in iodine and silver nitrate solutions. Biocontrol Sci. 2018; 23(3): 97-105. doi: 10.4265/bio.23.97


Review

For citations:


Nevezhina A.V., Fadeeva T.V. Antimicrobial potential of iodine-containing substances and materials. Acta Biomedica Scientifica. 2023;8(5):36-49. https://doi.org/10.29413/ABS.2023-8.5.4

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)