Природные компоненты как структура гидрогелей для клеточной терапии и тканевой инженерии
https://doi.org/10.29413/ABS.2023-8.5.3
Аннотация
Гидрогели – объёмные сетевые структуры, материалом для изготовления которых являются как природные, так и синтетические компоненты. Это гидрофильные полимеры, способные поглощать и удерживать значительное количество воды. Благодаря уникальным физико-химическим свойствам, программируемым в зависимости от цели дальнейшего применения, гидрогели широко используются в биомедицинской сфере. Данная обзорная статья посвящена природным материалам для создания гидрогелей с различными характеристиками.
К природным материалам для изготовления гидрогелей относятся коллаген, эластин, желатин, хитозан, декстран, гиалуроновая кислота, альгинат, фиброин шёлка, гликозаминогликаны. Являясь компонентами внеклеточного матрикса, натуральные материалы считаются наиболее физиологическими или биосовместимыми и не оказывают токсического воздействия на организм. Другим не менее важным параметром считается биодеградируемость, которую необходимо учитывать при выборе компонентов для изготовления гидрогелей. Природные материалы обеспечивают хорошую клеточную адгезию, распространение биоактивных сигналов, а также способны влиять на поведение клеток in vitro и in vivo. Для синтезирования гидрогелей используют физические и химические методы сшивания, с помощью которых задаются определённые свойства гидрогелей. Кроме того, гидрогели могут быть дополнительно модифицированы различными активными молекулами, факторами роста, повышающими их биофункциональность. На сегодняшний день гидрогели из природных материалов широко используются в офтальмологии, нейрохирургии, при лечении кожных ран, при различных сердечно-сосудистых патологиях, в восстановлении объёма циркулирующей крови, некоторых хрящевых дефектов, целенаправленной доставке фармакологических препаратов, активных молекул и во многом другом. Таким образом, гидрогели из природных компонентов являются крайне перспективным материалом в клеточных технологиях и тканевой инженерии.
Об авторах
Н. Н. ДреминаРоссия
Дремина Наталья Николаевна – кандидат биологических наук, старший научный сотрудник лаборатории клеточных технологий и регенеративной медицины
664003, г. Иркутск, ул. Борцов Революции, 1
И. С. Трухан
Россия
Трухан Ирина Сергеевна – кандидат биологических наук, старший научный сотрудник лаборатории клеточных технологий и регенеративной медицины
664003, г. Иркутск, ул. Борцов Революции, 1
И. А. Шурыгина
Россия
Шурыгина Ирина Александровна – доктор медицинских наук, профессор РАН, заместитель директора по научной работе
664003, г. Иркутск, ул. Борцов Революции, 1
Список литературы
1. Rehman WU, Asim M, Hussain S, Khan SA, Khan SB. Hydrogel: A promising material in pharmaceutics. Curr Pharm Des. 2020; 26(45): 5892-5908. doi: 10.2174/1381612826666201118095523
2. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013; 3: 316-342. doi: 10.5339/gcsp.2013.38
3. Catoira MC, Fusaro L, Francesco DD, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. JMater Sci Mater Med. 2019; 30(10): 115. doi: 10.1007/s10856-019-6318-7
4. Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP. Materials for pharmaceutical dosage forms: Molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010; 11(9): 3298-3322. doi: 10.3390/ijms11093298
5. Shtilman MI. Biodegradation of polymers. Journal of Siberian Federal University. Biology. 2015; 8: 113-130. doi: 10.17516/1997-1389-2015-8-2-113-130
6. Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 2019; 31(50): e1902042. doi: 10.1002/adma.201902042
7. Lu L, Yuan S, Wang J, Shen Y, Deng S, Xie L, et al. The formation mechanism of hydrogels. Curr Stem Cell Res Ther. 2018; 13(7): 490-496. doi: 10.2174/1574888X12666170612102706
8. El-Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK. Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. Eur Polym J. 2005; 41: 2584-2591. doi: 10.1016/j.eurpolymj.2005.05.035
9. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel). 2013; 6(4): 1285-1309. doi: 10.3390/ma6041285
10. Nakashima T, Takakura K, Komoto Y. Thromboresistance of graft-type copolymers with hydrophilic-hydrophobic microphase-separated structure. J Biomed Mater Res. 1977; 11: 787-798. doi: 10.1002/jbm.820110512
11. Ashfaq A, Clochard M-C, Coqueret X, Dispenza C, Driscoll MS, Ulański P, et al. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers (Basel). 2020; 12(12): 2877. doi: 10.3390/polym12122877
12. Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polymer J. 2000; 36(12): 2685-2692. doi: 10.1016/s0014-3057(00)00044-6
13. Chen Y, Sheng W, Lin J, Fang C, Deng J, Zhang P, et al. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration. ACS Appl Mater Interfaces. 2022; 14(6): 7592-7608. doi: 10.1021/acsami.1c21260.
14. Chen J, Huang T, Liu R, Wang C, Jiang H, Sun H. Congenital microtia patients: The genetically engineered exosomes released from porous gelatin methacryloyl hydrogel for downstream small RNA profiling, functional modulation of microtia chondrocytes and tissue-engineered ear cartilage regeneration. J Nanobiotechnology. 2022; 20(1): 164. doi: 10.1186/s12951-022-01352-6
15. Wei C, Tang P, Tang Y, Liu L, Lu X, Yang K, et al. Sponge-like macroporous hydrogel with antibacterial and ROS scavenging capabilities for diabetic wound regeneration. Adv Healthc Mater. 2022; 11(20): e2200717. doi: 10.1002/adhm.202200717
16. Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Function Mater. 2019; 29: 1804943. doi: 10.1002/adfm.201804943
17. Walimbe T, Panitch A. Best of both hydrogel worlds: harnessing bioactivity and tunability by incorporating glycosaminoglycans in collagen hydrogels. Bioengineering (Basel). 2020; 7(4): 156. doi: 10.3390/bioengineering7040156
18. Zeltz C, Gullberg D. The integrin-collagen connection – a glue for tissue repair? J Cell Sci. 2016; 129(4): 653-664. doi: 10.1242/jcs.180992
19. Gardner H. Integrin α1β1. Adv Exp Med Biol. 2014; 819: 21-39. doi: 10.1007/978-94-017-9153-3_2
20. Madamanchi A, Santoro SA, Zutter MM. α2β1 integrin. Adv Exp Med Biol. 2014; 819: 41-60. doi: 10.1007/978-94-017-9153-3_3
21. Lian J, Mansel BW, Ingham B, Prabakar S, Williams MAK. Controlling chain flexibility in collagen networks to produce hydrogels with distinct properties. Soft Mater. 2017; 15: 145-152. doi: 10.1080/1539445x.2016.1268626
22. Kreger ST, Bell BJ, Bailey J, Stites E, Kuske J, Waisner B, et al. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers. 2010; 93(8): 690-707. doi: 10.1002/bip.21431
23. Antman-Passig M, Shefi O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016; 16(4): 2567-2573. doi: 10.1021/acs.nanolett.6b00131
24. Vrana NE, Elsheikh A, Builles N, Damour O, Hasirci V. Effect of human corneal keratocytes and retinal pigment epithelial cells on the mechanical properties of micropatterned collagen films. Biomaterials. 2007; 8(29): 4303-4310. doi: 10.1016/j.biomaterials.2007.06.013
25. Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G. Review of alternative carrier materials for ocular surface reconstruction. Current Eye Research, 2014; 39(6): 541-552. doi: 10.3109/02713683.2013.853803
26. Vázquez-Portalatı NN, Kilmer CE, Panitch A, Liu JC. Characterization of collagen type I and II blended hydrogels for articular cartilage tissue engineering. Biomacromolecules. 2016; 17(10): 3145-3152. doi: 10.1021/acs.biomac.6b00684
27. Winter WE, Flax SD, Harris NS. Coagulation testing in the core laboratory. Lab Med. 2017; 48(4): 295-313. doi: 10.1093/labmed/lmx050
28. Thottappillil N, Nair PD. Scaffolds in vascular regeneration: Current status. Vasc Health Risk Manag. 2015; 11: 79-91. doi: 10.2147/VHRM.S50536
29. Mithieux SM, Weiss AS. Elastin. Adv Protein Chem. 2005; 70: 437-461. doi: 10.1016/S0065-3233(05)70013-9
30. Audelo MLDP, Mendoza-Muñoz N, Escutia-Guadarrama L, Giraldo-Gomez D, González-Torres M, Florán B, et al. Recent advances in elastin-based biomaterial. J Pharm Pharm Sci. 2020; 23: 314-332. doi: 10.18433/jpps31254
31. Petersen W, Rahmanian-Schwarz A, Werner J-O, Schiefera J, Rothenberger J, Hübner G, et al. The use of collagen-based matrices in the treatment of full-thickness wounds. Burns. 2016; 42(6): 1257-1264. doi: 10.1016/j.burns.2016.03.017
32. Kawabata S, Kawai K, Somamoto S, Noda K, Matsuura Y, Nakamura Y, et al. The development of a novel wound healing material, silk-elastin sponge. Journal of Biomaterials Science, Polymer Edition. 2017; 28(18): 2143-2153. doi: 10.1080/09205063.2017.1382829
33. Megeed Z, Cappello J, Ghandehari H. Controlled release of plasmid DNA from a genetically engineered silk-elastin like hydrogel. Pharm Res. 2002; 19(7): 954-959. doi: 10.1023/a:1016406120288
34. Arias FJ, Santos M, Ibanez-Fonseca A, Pina MJ, Serrano S. Elastin-like recombinamers as smart drug delivery systems. Curr Drug Targets. 2018; 19(4): 360-379. doi: 10.2174/1389450117666160201114617
35. Khalili S, Khorasani SN, Razav SM, Hashemibeni B, Tamayol A. Nanofibrous scaffolds with biomimetic composition for skin regeneration. Appl Biochem Biotechnol. 2019; 187(4): 1193-1203. doi: 10.1007/s12010-018-2871-7
36. Torre IG, Alonso M, Rodriguez-Cabello J-C. Elastin-based materials: promising candidates for cardiac tissue regeneration. Front Bioeng Biotechnol. 2020; 8: 657. doi: 10.3389/fbioe.2020.00657
37. Crosby CO, Zoldan J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen Biomater. 2019; 6(2): 61-73. doi: 10.1093/rb/rbz003
38. Fernández-Colino A, Wolf F, Rütten S, Schmitz-Rode T, Rodríguez-Cabello JC, Jockenhoevel S, et al. Small caliber compliant vascular grafts based on elastin-like recombinamers for in situ tissue engineering. Front Bioeng Biotechnol. 2019; 7: 340. doi: 10.3389/fbioe.2019.00340
39. Bobryshev YV. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis. 2005; 180(2): 293-303. doi: 10.1016/j.atherosclerosis.2005.01.024
40. Perrotta I, Russo E, Camastra C, Filice G, Mizio GD, Colosimo F, et al. New evidence for a critical role of elastin in calcification of native heart valves: Immunohistochemical and ultrastructural study with literature review. Histopathology. 2011; 59(3): 504-513. doi: 10.1111/j.1365-2559.2011.03977.x
41. Grassl ED, Oegema TR, Tranquillo RT. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. JBiomed Mater Res. 2002; 60(4): 607-612. doi: 10.1002/jbm.10107
42. Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrinbased delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev. 2018; 129: 134-147. doi: 10.1016/j.addr.2017.12.007
43. Gülşen A. Endoscopic lung volume reduction with autologous blood: What is the evidence? Turk Thorac J. 2021; 22(1): 67-74. doi: 10.5152/TurkThoracJ.2020.19118
44. Yu Z, Li H, Xia P, Kong W, Chang Y, Fu C, et al. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng. 2020; 14: 22. doi: 10.1186/s13036-020-00244-3
45. Chrobak MO, Hansen KJ, Gershlak JR, Vratsanos M, Kanellias M, Gaudette GR, et al. Design of a fibrin microthread-based composite layer for use in a cardiac patch. ACS Biomater Sci Eng. 2017; 3(7): 1394-1403. doi: 10.1021/acsbiomaterials.6b00547
46. Boran G, Regenstein JM. Fish gelatin. Adv Food Nutr Res. 2010; 60: 119-143. doi: 10.1016/S1043-4526(10)60005-8
47. Xiao J, Ma Y, Wang W, Zhang K, Tian X, Zhao K, et al. Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure. Food Chem. 2021; 345: 128802. doi: 10.1016/j.foodchem.2020.128802
48. Choi YH, Kim S-H, Kim I-S, Kim KM, Kwon SK, Hwang NS. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization. Acta Biomater. 2019; 95: 285-296. doi: 10.1016/j.actbio.2019.01.057
49. Satapathy MK, Manga YB, Ostrikov KK, Chiang W-H, Pandey A, Lekha R, et al. Microplasma cross-linked graphene oxidegelatin hydrogel for cartilage reconstructive surgery. ACS Appl Mater Interfaces. 2020; 12(1): 86-95. doi: 10.1021/acsami.9b14073
50. Hsieh C-T, Hsu S-H. Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting. ACS Appl Mater Interfaces. 2019; 11(36): 32746-32757. doi: 10.1021/acsami.9b10784
51. Ashe S, Behera S, Dash P, Nayak D, Nayak B. Gelatin carrageenan sericin hydrogel composites improves cell viability of cryopreserved SaOS-2 cells. Int J Biol Macromol. 2020; 154: 606-620. doi: 10.1016/j.ijbiomac.2020.03.039
52. Adukauskiene D, Mazeikiene S, Veikutiene A, Rimaitis K. Infusion solutions of gelatin derivate. Medicina (Kaunas). 2009; 45(1): 77-84.
53. Morshedloo F, Khoshfetrat AB, Kazemi D, Ahmadian M. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2020; 108(7): 2950-2960. doi: 10.1002/jbm.b.34625
54. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013; 65(4): 457-470. doi: 10.1016/j.addr.2012.09.043
55. Han F, Liu S, Liu X, Pei Y, Bai S, Zhao H, et al. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomater. 2014; 10(2): 921-930. doi: 10.1016/j.actbio.2013.09.026
56. Sultan MT, Lee OJ, Kim SH, Ju HW, Park CH. Silk fibroin in wound healing process. Adv Exp Med Biol. 2018; 1077: 115-126. doi: 10.1007/978-981-13-0947-2_7
57. Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech. 2017; 80(3): 280-290. doi: 10.1002/jemt.22532
58. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007; 32: 991-1007. doi: 10.1016/j.progpolymsci.2007.05.013
59. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials. 2006; 27(6): 6138-6149. doi: 10.1016/j.biomaterials.2006.07.015
60. Liu HF, Fan HB, Wang Y, Toh SL, Goh JC. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008; 29(6): 662-674. doi: 10.1016/j.biomaterials.2007.10.035
61. Megeed Z, Haider M, Li D, O’Malley Jr BW, Cappello J, Ghandehari H. In vitro and in vivo evaluation of recombinant silkelastinlike hydrogels for cancer gene therapy. J Control Release. 2004; 94(2–3): 433-445. doi: 10.1016/j.jconrel.2003.10.027
62. Purama RK, Goswami P, Khan AT, Goyal A. Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym. 2009; 76(1): 30-35. doi: 10.1016/j.carbpol.2008.09.018
63. Sun G, Mao JJ. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine (Lond). 2012; 7(11): 1771-1784. doi: 10.2217/nnm.12.149
64. Askari M, Fisher C, Wenige FG, Bidic S, Lee WPA. Anticoagulation therapy in microsurgery: A review. J Hand Surg. 2006; 31(5): 836-846. doi: 10.1016/j.jhsa.2006.02.023
65. Gombocz K, Beledi A, Alotti N, Kecskés G, Gábor V, Bogár L, et al. Influence of dextran-70 on systemic inflammatory response and myocardial ischaemia-reperfusion following cardiac operations. Randomized controlled trial. Crit Care. 2007; 11(4): R87. doi: 10.1186/cc6095
66. Steinbauer M, Harris AG, Messmer K. Effects of dextran on microvascular ischemia-reperfusion injury in striated muscle. Am J Physiol. 1997; 272(4 Pt 2): 1710-1716. doi: 10.1152/ajpheart.1997.272.4.H1710
67. Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine. 2018; 13(24): 3149-3158. doi: 10.2217/nnm-2018-0331
68. Sun G, Shen Y-I, Ho CC, Kusuma S, Gerecht S. Functional groups affect physical and biological properties of dextranbased hydrogels. J Biomed Mater Res A. 2010; 93(3): 1080-1090. doi: 10.1002/jbm.a.32604
69. Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, et al. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces. 2015; 128: 140-148. doi: 10.1016/j.colsurfb.2015.02.005
70. Muxika A, Etxabide A, Uranga J, Guerrero P, Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol. 2017; 105(2): 1358-1368. doi: 10.1016/j.ijbiomac.2017.07.087
71. Sapuła P, Bialik-Wąs K, Malarz K. Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels? Pharmaceutics. 2023; 15(1): 253. doi: 10.3390/pharmaceutics15010253
72. Vunain E, Mishra AK, Mamba BB. Fundamentals of chitosan for biomedical applications. Chitosan Based Biomaterials. 2017; 1: 3-30. doi: 10.1016/b978-0-08-100230-8.00001-7
73. Zhou HY, Chen XG, Kong M, Liu CS, Cha DS, Kennedyd JF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydrate Polymers. 2008; 73(2): 265-273. doi: 10.1016/j.carbpol.2007.11.026
74. Song F, Kong Y, Shao C, Cheng Y, Lu J, Tao Y, et al. Chitosanbased multifunctional flexible hemostatic bio-hydrogel. Acta Biomater. 2021; 136: 170-183. doi: 10.1016/j.actbio.2021.09.056
75. Sudha PN, Rose MH. Beneficial effects of hyaluronic acid. Adv Food Nutr Res. 2014; 72: 137-176. doi: 10.1016/B978-0-12-800269-8.00009-9
76. Ifkovits JL, Burdick JA. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007; 13(10): 2369-2385. doi: 10.1089/ten.2007.0093
77. Miki D, Dastgheib K, Kim T, Pfister-Serres A, Smeds KA, Inoue M, et al. A photopolymerized sealant for corneal lacerations. Cornea. 2002; 21(4): 393-399. doi: 10.1097/00003226-200205000-00012
78. Prata JE, Barth TA, Bencherif SA, Washburn NR. Complex fluids based on methacrylated hyaluronic acid. Biomacromolecules. 2010; 11(3): 769-775. doi: 10.1021/bm901373x
79. Sahoo S, Chung C, Khetan S, Burdick JA. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules. 2008; 9(4): 1088-1092. doi: 10.1021/bm800051m
80. Pawar SN, Edgar KJ. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials. 2012; 33(11): 3279-3305. doi: 10.1016/j.biomaterials.2012.01.007
81. Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. IntJ Biol Macromol. 2020; 162: 1414-1428. doi: 10.1016/j.ijbiomac.2020.07.311
82. Abbasi AR, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, et al. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol. 2020; 155: 751-765. doi: 10.1016/j.ijbiomac.2020.03.248
83. Nazarnezhada S, Abbaszadeh-Goudarzi G, Samadian H, Khaksari M, Ghatar JM, Khastar H, et al. Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. IntJ Biol Macromol. 2020; 164: 3323-3331. doi: 10.1016/j.ijbiomac.2020.08.233
84. Batool SR, Nazeer MA, Ekinci D, Sahin A, Kizilel S. Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. IntJ Biol Macromol. 2020; 150: 315-325. doi: 10.1016/j.ijbiomac.2020.02.042
85. Lei X, Wu Y, Peng X, Zhao Y, Zhou X, Yu X. Research on alginate-polyacrylamide enhanced amnion hydrogel, a potential vascular substitute material. Mater Sci Eng C Mater Biol Appl. 2020; 115: 111145. doi: 10.1016/j.msec.2020.111145
Рецензия
Для цитирования:
Дремина Н.Н., Трухан И.С., Шурыгина И.А. Природные компоненты как структура гидрогелей для клеточной терапии и тканевой инженерии. Acta Biomedica Scientifica. 2023;8(5):23-35. https://doi.org/10.29413/ABS.2023-8.5.3
For citation:
Dremina N.N., Trukhan I.S., Shurygina I.A. Natural components as the structure of hydrogels for cellular therapy and tissue engineering. Acta Biomedica Scientifica. 2023;8(5):23-35. https://doi.org/10.29413/ABS.2023-8.5.3