Preview

Acta Biomedica Scientifica

Расширенный поиск

Модификация липопротеидов низкой плотности низкомолекулярными карбонильными продуктами свободнорадикального окисления липидов и углеводов играет ключевую роль в атеросклеротическом повреждении стенки сосудов и дисфункции эндотелия

https://doi.org/10.29413/ABS.2023-8.3.2

Полный текст:

Аннотация

В обзоре приводятся доказательства участия липопротеидов низкой плотности (ЛНП), модифицированных низкомолекулярными дикарбонильными соединениями, образующимися при свободнорадикальном окислении липидов (малоновый диальдегид) и углеводов, в развитии дисфункции эндотелия и атеросклеротического поражения сосудов. Авторы полагают, что именно они, а не окисленные (гидропероксид-содержащие) ЛНП являются основными факторами патогенеза. Обсуждается роль дикарбонил-модифицированных ЛНП в LOX-1-зависимой индукции процессов, приводящих к развитию дисфункции эндотелия. Рассматриваются результаты исследований, доказывающих, что к повреждению покрывающего люминальную поверхность эндотелия гликокаликса – слоя макромолекул, препятствующего развитию дисфункции эндотелия, – ведёт гиперпродукция активных форм кислорода. Обсуждаются пути фармакологической коррекции процессов свободнорадикального окисления, благодаря которой может достигаться торможение процессов атерогенеза и диабетогенеза.

Об авторах

В. З. Ланкин
ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Россия

Ланкин Вадим Зиновьевич – доктор биологических наук, профессор, руководитель отдела биохимии свободнорадикальных процессов

121552, г. Москва, ул. Академика Чазова, 15а, Россия 



А. К. Тихазе
ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Россия

Тихазе Алла Карловна – доктор медицинских наук, профессор, главный научный сотрудник отдела биохимии свободнорадикальных процессов

121552, г. Москва, ул. Академика Чазова, 15а, Россия 



В. Я. Косач
ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Россия

Косач Валерия Ярославовна – врач-кардиолог, аспирант

121552, г. Москва, ул. Академика Чазова, 15а, Россия 



Г. Г. Коновалова
ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Палау

Коновалова Галина Георгиевна – кандидат биологических наук, старший научный сотрудник отдела биохимии свободнорадикальных процессов

121552, г. Москва, ул. Академика Чазова, 15а, Россия 



А. В. Кудряшова
ФГБУ «Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова» Минздрава России
Россия

Кудряшова Анна Викторовна – лаборант-исследователь отдела биохимии свободнорадикальных процессов
 

121552, г. Москва, ул. Академика Чазова, 15а, Россия 



Список литературы

1. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956; 11(3): 298-300. doi: 10.1093/geronj/11.3.298

2. Harman D. The free radical theory of aging. Free Radic Biol. 1982; 5: 255-275.

3. Harman D. The free radical theory of aging: The “free radical” diseases. Age. 1984; 7: 111-131.

4. Glavind J, Hartmann S, Clemmensen J, Jessen KE, Dam H. Studies on the role of lipid peroxides in human pathology. Acta Pathol Microbiol Scand. 1952; 30: 1-6. doi: 10.1111/j.1699-0463.1952.tb00157.x

5. Woodford FP, Bottcher CJ, Oette K, Anrens EH. The artificial nature of lipid peroxides detected in extracts of human aorta. Atherosclerosis Res. 1965; 5: 311-316. doi: 10.1016/s0368-1319(65)80046-1

6. Oette K, Peterson ML, McAuley RL. A highly sensitive method for measurement of lipid hydroperoxides by iodometry and amperometric endpoint. J Lipid Res. 1963; 4: 212-215.

7. Ланкин В.З., Тихазе А.К., Котелевцева Н.В. Перекиси липидов и атеросклероз. Кардиология. 1976; 16(2): 23-30.

8. Kühn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992; 5(1): 17-22.

9. Lankin VZ, Tikhaze AK. Atherosclerosis as a free radical pathology and antioxidative therapy of this disease. Free radicals, NO and inflammation. Amsterdam: IOS Press; 2003; 344: 218-231.

10. Harland WA, Gilbert JD, Brooks CJ. Lipids of human atheroma. 8. Oxidised derivatives of cholesteryl linoleate. Biochim Biophys Acta. 1973; 316(3): 378-385.

11. Carpenter KL, Taylor SE, Ballantine JA, Fussell B, Halliwell B, Mitchinson MJ. Lipids and oxidised lipids in human atheroma and normal aorta. Biochim Biophys Acta. 1993; 1167(2): 121-130. doi: 10.1016/0005-2760(93)90151-x

12. Orekhov AN, Tertov VV, Novikov ID, Krushinsky AV, Andreeva ER, Lankin VZ, et al. Lipids in cells of atherosclerotic and uninvolved human aorta. I. Lipid composition of aortic tissue and enzyme-isolated and cultured cells. Exp Mol Pathol. 1985; 42(1): 117-137. doi: 10.1016/0014-4800(85)90022-x

13. Lankin VZ, Vikhert AM, Kosykh VA, Tikhaze AK, Galakhov IE, Orekhov AN, et al. Enzymatic detoxication of superoxide anionradical and lipoperoxides in intima and media of atherosclerotic aorta. Biomed Biochim Acta. 1984; 43: 797-802.

14. Lankin VZ, Tikhaze AK. Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: A personal look back on 50 years of research. Curr Aging Sci. 2017; 10(1): 18-25. doi: 10.2174/1874609809666160926142640

15. Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992; 13(4): 341-90. doi: 10.1016/0891-5849(92)90181-f

16. Steinbrecher UP, Parthasarathy S, Leaks DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by cells involves lipid peroxidation and degradation low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984; 81: 3883-3887. doi: 10.1073/pnas.81.12.3883

17. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979; 76(1): 333-337. doi: 10.1073/pnas.76.1.333

18. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modification of low density lipoprotein that increase its atherogenicity. New Engl J Med. 1989; 320: 915-924. doi: 10.1056/NEJM198904063201407

19. Steibrecher UP, Lougheed M, Kwan WC, Dirks M. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apoprotein B by products fatty acid peroxidation. J Biol Chem. 1989; 264: 15216-15223.

20. Kita T, Ishii K, Yokode M, Kume N, Nagano Y, Arai H, Kawai C. The role of oxidized low density lipoprotein in the pathogenesis of atherosclerosis. Eur Heart J. 1990; 11(Suppl E): 122-127. doi: 10.1093/eurheartj/11.suppl_e.122

21. Witztum JL, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis. J Clin Invest. 1991; 88(6): 1785-1792. doi: 10.1172/JCI115499

22. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994; 344: 793-795. doi: 10.1016/s0140-6736(94)92346-9

23. Yla-Herttuala S. Macrophages and oxidized low density lipoproteins in the pathogenesis of atherosclerosis. Ann Med. 1991; 23: 561-566. doi: 10.3109/07853899109150518

24. Yla-Herttuala S. Role of lipid and lipoprotein oxidation in the pathogenesis of atherosclerosis. Drugs Today. 1994; 30: 507-514.

25. Steinberg D. Role of oxydized LDL and antioxidants in atherosclerosis. Adv Exp Med Biol. 1995; 369: 39-48. doi: 10.1007/978-1-4615-1957-7_5

26. Estévez M, Padilla P, Carvalho L, Martín L, Carrapiso A, Delgadoa J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol. 2019; 26: 101277. doi: 10.1016/j.redox.2019.101277

27. Fogelman AM, Schechter I, Seager J, Hokum M, Child JS, Edwards PE. Malondialdehyde аlteration of low density lipoproteins leads to the cholesteryl ester accumulation in human monocyte macrophages. Proc Natl Acad Sci U S A. 1980; 77: 2214-2218. doi: 10.1073/pnas.77.4.2214

28. Lankin VZ, Tikhaze AK, Osis YuG. Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structuraldynamic parameters of the membranes. Biochemistry (Mosc). 2002; 67(5):566-574.

29. Ланкин В.З. Перекиси липидов и атеросклероз. Гипотеза: роль холестерина и свободнорадикального перекисного окисления липидов в изменении свойств клеточной мембраны при гиперхолестеринемии и атеросклерозе. Кардиология. 1980; 20(8): 42-48.

30. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006; 141: 312-322. doi: 10.1104/pp.106.077073

31. Lankin VZ, Tikhaze AK, Kumskova EM. Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein. Mol Cell Biochem. 2012; 365(1-2): 93-98. doi: 10.1007/s11010-012-1247-5

32. Schewe T, Rapoport SM, Kühn H. Enzymology and physiology of reticulocyte lipoxygenase: Comparison with other lipoxygenases. Adv Enzymol. 1986; 58: 191-272. doi: 10.1002/9780470123041.ch6

33. Lankin V, Viigimaa M, Tikhaze A, Kumskova G, Konovalova G, Abina E, et al. Cholesterol-rich low density lipoproteins are also more oxidized. Mol Cell Biochem. 2011; 355(1-2): 187-191. doi: 10.1007/s11010-011-0853-y

34. Khlebus E, Kutsenko V, Meshkov A, Ershova A, Kiseleva A, Shcherbakova N, et al. Multiple rare and common variants in APOB gene locus associated with oxidatively modified low-density lipoprotein levels. PLoS One. 2019; 14(5): e0217620. doi: 10.1371/journal.pone.0217620

35. Тихазе А.К., Косач В.Я., Ланкин В.З., Панферова А.А., Смирнова М.Д. Показатель, характеризующий карбонилзависимую модификацию эритроцитарной супероксиддисмутазы как биохимический маркер окислительного стресса при ишемической болезни сердца. Кардиология. 2020; 60(5): 57-61. doi: 10.18087/cardio.2020.5.n1019

36. Lankin VZ, Shumaev KB, Tikhaze AK, Kurganov BI. Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase. Dokl Biochem Biophys (Mosc). 2017; 475(6): 287-290. doi: 10.1134/S1607672917040123

37. Nishizawa T, Bornfeldt KE. Diabetic vascular disease and the potential role of macrophage glucose metabolism. Ann Med. 2012; 44(6): 555-563. doi: 10.3109/07853890.2011.585346

38. Bornfeldt KE. Does elevated glucose promote atherosclerosis? Circ Res. 2016; 119(2): 190-193. doi: 10.1161/CIRCRESAHA.116.308873

39. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020; 21(5): 1835. doi: 10.3390/ijms21051835

40. Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988; 5(2): 113-124. doi: 10.1016/0891-5849(88)90036-6

41. Lankin VZ, Tikhaze AK, Kapel’ko VI, Shepel’kova GS, Shumaev KB, Panasenko OM, et al. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry (Mosc). 2007; 72(10): 1081-1090. doi: 10.1134/s0006297907100069

42. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999; 344: 109-116. doi: 10.1016/0891-5849(88)90036-6

43. Wang XJ, Ma SB, Liu ZF, Li H, Gao WY. Elevated levels of α-dicarbonyl compounds in the plasma of type II diabetics and their relevance with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life. Sci. 2019; 1106-1107: 19-25. doi: 10.1016/j.jchromb.2018.12.027

44. Spiteller G. The relation of lipid peroxidation processes with atherogenesis: A new theory on atherogenesis. Mol Nutr Food Res. 2005; 49(11): 999-1013. doi: 10.1002/mnfr.200500055

45. Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann N Y Acad Sci. 2008; 1126: 128-133. doi: 10.1196/annals.1433.031

46. Lankin VZ, Shadyro OI, Shumaev KB, Tikhaze AK, Sladkova AA. Non-enzymatic methylglyoxal formation from glucose metabolites and generation of superoxide anion radical during methylglyoxal-dependend cross-links reaction. J Antioxidant Activity. 2019; 1(4): 34-45. doi: 10.14302/issn.2471-2140.jaa-19-2997

47. Lankin V, Konovalova G, Tikhaze A, Shumaev K, Kumskova E, Viigimaa M. The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: A common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem. 2014; 395(1-2): 241-252. doi: 10.1007/s11010-014-2131-2

48. Shumaev KB, Gubkina SA, Kumskova EM, Shepelkova GS, Ruuge EK, Lankin VZ. Superoxide formation as a result of interaction of l-lysine with dicarbonyl compounds and its possible mechanism. Biochemistry (Mosc). 2009; 74(4): 461-466. doi: 10.1134/s0006297909040154

49. Ланкин В.З., Тихазе А.К., Коновалова Г.Г., Одинокова О.А., Дорощук Н.А., Чазова И.Е. Окислительный и карбонильный стресс как фактор модификации белков и деструкции ДНК при сахарном диабете. Терапевтический архив. 2018; 90(10): 46-50. doi: 10.26442/terarkh201890104-50

50. Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a biomarker for oxidative stress: A systematic literature review and meta-analysis. Int J Mol Sci. 2020; 26; 21(11): 3743. doi: 10.3390/ijms21113743

51. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Belova-Kumskova EM, Grechnikova MA, et al. Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients. J Diabetes. 2016; 8(3): 398-404. doi: 10.1111/1753-0407.12309

52. Knott HM, Brown BE, Davies MJ, Deant RT. Glycation and glycoxidation of low-density lipoproteins by glucose and lowmolecular mass aldehydes. Formation of modified and oxidized particles. Eur J Biochem.2003; 270: 3572-3582. doi: 10.1046/j.1432-1033.2003.03742.x

53. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013; 2013: 152786. doi: 10.1155/2013/152786

54. Lubrano V, Balzan S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free Radic Res. 2014; 48(8): 841-848. doi: 10.3109/10715762.2014.929122

55. Chistiakov DA, Orekhov AN, Bobryshevet YuV. LOX-1-mediated effects on vascular cells in atherosclerosis. Cell Physiol Biochem. 2016; 38(5): 1851-1859. doi: 10.1159/000443123

56. Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem. 2019; 26(9): 1693-1700. doi: 10.2174/0929867325666180508100950

57. Galle J, Schneider R, Heinloth A, Wanner C, Galle PR, Conzelmann E, et al. Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: Role of oxidative stress. Kidney Int. 1999; 55(4): 1450-1461. doi: 10.1046/j.1523-1755.1999.00351

58. Lankin VZ, Sharapov MG, Goncharov RG, Antonova OA, Tikhaze AK, Konovalova GG. Expression of LOX-1 and NADPH oxidase in endotheliocytes by dicarbonyl-modified LDL. Biochemistry (Mosc). 2023.

59. Sharapov MG, Goncharov RG, Gordeeva AE, Novoselov VI, Antonova OA, Tikhaze AK, et al. Enzymatic antioxidant system of endotheliocytes. Dokl Biochem Biophys (Mosc). 2016; 471(1): 410-412. doi: 10.1134/S1607672916060090

60. Lankin VZ, Sharapov MG, Goncharov RG, Tikhaze AK, Novoselov VI. Natural dicarbonyls inhibit peroxidase activity of peroxiredoxins. Dokl Biochem Biophys (Mosc). 2019; 485(3): 132-134. doi: 10.1134/S1607672919020157

61. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007; 9: 121-167. doi: 10.1146/annurev.bioeng.9.060906.151959

62. Reitsma S, Slaaf DW, Vink H, Zandvoort MA, Egbrink MG. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch. 2007; 454: 345-359. doi: 10.1007/s00424-007-0212-8

63. Noble MIM, Drake-Holland AJ, Vink H. Hypothesis: Arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 2008; 101(7): 513-518. doi: 10.1093/qjmed/hcn024

64. Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015; 80(3): 389-402. doi: 10.1111/bcp.12629

65. Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive. Care. 2017; 45(3): 295-307. doi: 10.1177/0310057X1704500305

66. Nieuwdorp M, Haeften TW, Gouverneur MC, Mooij HL, Lieshout MH, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006; 55(2): 480-486. doi: 10.2337/diabetes.55.02.06.db05-1103

67. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Annals Biomed Engineer.2012; 40(4): 828-839. doi: 10.1007/s10439-011-0429-8

68. Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyteendothelial cell adhesion. Am J Physiol Heart Circulat Physiol. 2002; 283(4): H1282-H1291. doi: 10.1152/ajpheart.00117.2002

69. Reitsma S, Egbrink MG, Viviane VT, Megens RT, Engels W, Vink H, et al. Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thrombos Haemostas. 2011; 106(11): 939-946. doi: 10.1160/TH11-02-0133

70. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: A review of the vascular barrier. Anaesthesia. 2014; 69: 777-784. doi: 10.1111/anae.12661

71. Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. Scientif World J. 2010; 10: 917-923. doi: 10.1100/tsw.2010.88

72. van den Berg BM, Spaan JA, Vink H. Impaired glycocalyx barrier properties contribute to enhanced intimal lowdensity lipoprotein accumulation at the carotid artery bifurcation in mice. Pflügers Archiv Europ J Physiol. 2009; 457(6): 1199-1206. doi: 10.1007/s00424-008-0590-6

73. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007; 116: 1896-1906. doi: 10.1161/CIRCULATIONAHA.106.684852

74. Chappell D, Jacob M, Hofmann-Kiefer K, Rehm M, Welsch U, Conzen P, et al. Antithrombin reduces shedding of theendothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009; 83: 388-396. doi: 10.1093/cvr/cvp097

75. Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemiareperfusion injury. Am J Physiol Heart Circul Physiol. 2006; 290(6): H2247-H2256. doi: 10.1152/ajpheart.00796.2005

76. Vink H, Constantinescu AA, Spaan JAE. Oxidized lipoproteins degrade the endothelial surface layer: Implications for platelet-endothelial cell adhesion. Circulation. 2000; 101: 1500-1502. doi: 10.1161/01.cir.101.13.1500

77. Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol Heart Circ Physiol. 2001; 280(3): H1051-H1057. doi: 10.1152/ajpheart.2001.280.3.H1051

78. Jialal I, Traber M, Devaraj S. Is there a vitamin E paradox? Curr Opin Lipidol. 2001; 12: 49-53. doi: 10.1097/00041433-200102000-00009

79. Kuller LH. A time to stop prescribing antioxidant vitamins to prevent and treat heart disease? Arterioscler Tromb Vasc Biol. 2001; 21(8): 1253.

80. Steinberg D. Is there a potential therapeutic role for vitamin E or other antioxidants in atherosclerosis? Curr Opin Lipidol. 2000; 11(6): 603-607. doi: 10.1097/00041433-200012000-00006

81. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc Med. 2001; 11(3-4): 93-102. doi: 10.1016/s1050-1738(01)00111-6

82. Steinberg D, Witztum JL. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation. 2002; 105(17): 2107-2111. doi: 10.1161/01.cir.0000014762.06201.06

83. Losonczy KG, Harris TB, Havlik RJ. Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: The established populations for epidemiologic studies of the elderly. Am J Clin Nutr. 1996; 64(2): 190-196. doi: 10.1093/ajcn/64.2.190

84. Steinberg D. Antioxidant vitamins and coronary heart disease. New Engl J Med. 1993; 328(20): 1487-1489. doi: 10.1056/NEJM199305203282012

85. Steinberg D. Clinical trials of antioxidants in atherosclerosis: are we doing the right thing? Lancet. 1995; 346(8966): 36-38. doi: 10.1016/s0140-6736(95)92657-7

86. Hodis HN, Mack WJ, La Bree L, Cashin-Hemphill L, Sevanian A, Johnson R, et al. Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. JAMA. 1995; 273(23): 1849-1854

87. Rimm EB, Stumpfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in man. New Engl J Med. 1993; 328(20): 1450-1456. doi: 10.1056/NEJM199305203282004

88. Stumpfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. New Engl J Med. 1993; 328(20): 1444-1449. doi: 10.1056/NEJM199305203282003

89. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996; 347(9004): 781-786. doi: 10.1016/s0140-6736(96)90866-1

90. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebocontrolled trial. Lancet. 2000; 356(9237): 1213-1218. doi: 10.1016/s0140-6736(00)02783-5

91. Тhe Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. New Engl J Med. 1994; 330(15): 1029-1035. doi:10.1056/NEJM199404143301501

92. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet. 1999; 354(9177): 447-455.

93. The Heart Outcomes Prevention Evaluation Study Investigators; Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in highrisk patients. New Engl J Med. 2000; 342(3): 154-160. doi: 10.1056/NEJM200001203420302

94. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20536 high-risk individuals: A randomized placebo-controlled trial. Lancet. 2002; 360: 23-33. doi: 10.1016/S0140-6736(02)09328-5

95. Traber MG, Burton GW, Ingold KU, Kayden HJ. RRRand SRR- alpha-tocopherols are secreted without discrimination in human chylomicrons, but RRR-alpha-tocopherol is preferentially secreted in very low density lipoproteins. J Lipid Res. 1990; 31(4): 675-685.

96. Bowry VW, Ingold KU, Stocker R. Vitamin E in human lowdensity lipoprotein. When and how antioxidant becomes a prooxidant. Biochem J. 1992; 288(Pt 2): 341-344. doi: 10.1042/bj2880341

97. Stocker R, Bowry VW, Frei B. Ubiquinol-10 protect human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc Natl Acad Sci U S A. 1991; 88(5): 1646-1650. doi: 10.1073/pnas.88.5.1646

98. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992; 1126(3): 247-254. doi: 10.1016/0005-2760(92)90237-p

99. Ahmadvand H, Mabuchi H, Nohara A, Kobayahi J, Kawashiri MA. Effects of coenzyme Q(10) on LDL oxidation in vitro. Acta Med Iran. 2013; 51(1): 12-18.

100. Lankin VZ, Tikhaze AK, Kukharchuk VV, Konovalova GG, Pisarenko OI, Kaminnyi AI, et al. Antioxidants decreases the intensification of low density lipoprotein free radical peroxidation during therapy with statins. Mol Cell Biochem. 2003; 249(1-2): 129-140.

101. Stocker R. Natural antioxidants and atherosclerosis. Asia Pac J Clin Nutr. 1993; 2(Suppl 1): 15-20.

102. Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Nat Acad Sci U S A. 1990; 87: 4879-4883. doi: 10.1073/pnas.87.12.4879

103. Beyer RE. The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr.1994; 26(4): 349-358. doi: 10.1007/BF00762775

104. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979; 278(5706): 737-738. doi: 10.1038/278737a0

105. Niki E, Saito T, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem. 1984; 259(7): 4177-4182.

106. Lankin V. The enzymatic systems in the regulation of free radical lipid peroxidation. Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects. Amsterdam: IOS Press; 2003; 344: 8-23.

107. Tikhaze AK, Konovalova GG, Lankin VZ, Kaminnyi AI, Kaminnaja VI, Ruuge EK, et al. Effect of ubiquinone Q(10) and antioxidant vitamins on free radical oxidation of phospholipids in biological membranes of rat liver. Bull Exp Biol Med (Mosc). 2005; 140(2): 181-183. doi: 10.1007/s10517-005-0439-3

108. Kagan VE, Freisleben HJ, Tsuchiya M, Forte T, Packer L. Generation of probucol radicals and their reduction by ascorbate and dihydrolipoic acid in human low density lipoproteins. Free Rad Res Communs. 1991; 15(5): 265-76. doi: 10.3109/10715769109105222

109. Shumaev KB, Ruuge EK, Dmitrovsky AA, Bykhovsky VYa, Kukharchuk VV. Effect of lipid peroxidation products and antioxidants on the formation of probucol radical in low density lipoproteins. Biochemistry (Mosc). 1997; 62(6): 657-660

110. Tikhaze AK, Lankin VZ, Konovalova GG, Shumaev KB, Kaminnyi AI, Kozachenko AI, et al. Antioxidant probucol as an effective scavenger of lipid radicals in low density lipoproteins in vivo and in vitro. Bull Exper Biol Med (Mosc). 1999; 128(2): 818-821

111. Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol. 1999; 58(11): 1765-1773. doi: 10.1016/s0006-2952(99)00263-4

112. Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glycation processes. Diabetes Metab. 2003; 29(4 Pt 2): 6S95-6S103. doi: 10.1016/s1262-3636(03)72793-1

113. Wang G, Wang Y, Yang Q, Xu C, Zheng Y, Wang L, et al. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis. 2022; 13(1): 29. doi: 10.1038/s41419-021-04478-x

114. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013; 93(4): 1803-1845. doi: 10.1152/physrev.00039.2012

115. Reddy VP, Garrett MR, Perry G, Smith MA. Carnosine: A versatile antioxidant and antiglycating agent. Sci Aging Knowledge Environ. 2005; 18: e12. doi: 10.1126/sageke.2005.18.pe12


Рецензия

Для цитирования:


Ланкин В.З., Тихазе А.К., Косач В.Я., Коновалова Г.Г., Кудряшова А.В. Модификация липопротеидов низкой плотности низкомолекулярными карбонильными продуктами свободнорадикального окисления липидов и углеводов играет ключевую роль в атеросклеротическом повреждении стенки сосудов и дисфункции эндотелия. Acta Biomedica Scientifica. 2023;8(3):14-24. https://doi.org/10.29413/ABS.2023-8.3.2

For citation:


Lankin V.Z., Tikhaze A.K., Kosach V.Y., Konovalova G.G., Kudryashova A.V. Modification of low-density lipoproteins by low molecular weight carbonyl products of free-radical oxidation of lipids and carbohydrates plays a key role in atherosclerotic lesion of the vascular wall and in endothelial dysfunction. Acta Biomedica Scientifica. 2023;8(3):14-24. (In Russ.) https://doi.org/10.29413/ABS.2023-8.3.2

Просмотров: 867


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)