The role of reactive oxygen species and redoxsensitive protein kinases in the infarction-limiting effect of opioid peptide deltorphin II in cardiac reperfusion in rats
https://doi.org/10.29413/ABS.2023-8.2.25
Abstract
Background. Mortality from acute myocardial infarction with ST-segment elevation in cardiac hospitals ranges from 4.5 to 7 %, and these data has not decreased in recent years. The most common cause of death in patients is cardiogenic shock, the likelihood of which directly depends on infarct size. It is quite clear that there is an urgent need to create drugs to limit the size of infarction and prevent the occurrence of cardiogenic shock.
The aim. To evaluate the role of reactive oxygen species and redox-sensitive protein kinases in the infarction-limiting effect of opioid peptide deltorphin II in cardiac reperfusion in rats.
Materials and methods. Coronary occlusion (45 min) and reperfusion (120 min) were performed in rats anesthetized with α-chloralose. The selective δ2-opioid receptor agonist deltorphin II, a hydroxyl radical scavenger 2-mercaptoprpionyl glycine (2-MPG), a superoxide radical scavenger tempol, the protein kinase Cδ (PKCδ) inhibitor rottlerin, the PI3-kinase inhibitor wortmannin, the inhibitor of ERK1/2 kinase PD98059 were injected before of reperfusion of the heart.
Results. Deltorphin II contributed to a two-fold decrease in infarction size. Injection of 2-MPG, tempol, rottlerin, wortmannin, PD98059 alone had no effect on infarction size in rats. 2-MPG and tempol did not affect the infarction-reducing effect of deltorphin II. Rottlerin, wortmannin, and PD98059 eliminated the cardioprotective effect of deltorphin II.
Conclusion. The infarction-reducing effect of deltorphin II does not depend on the production of superoxide radical and hydroxyl radical. Superoxide radical and hydroxyl radical do not play a significant role in reperfusion injury of the heart after coronary occlusion (45 min). PKCδ, PI3-kinase, and ERK1/2 kinase are involved in the infarction-limiting effect of deltorphin II in myocardial reperfusion.
About the Authors
S. V. PopovRussian Federation
Sergey V. Popov – Dr. Sc. (Med.), Professor, Academician of RAS, Director, Cardiology Research Institute.
Kievskaya str. 111A, Tomsk 634012
A. V. Mukhomedzyanov
Russian Federation
Alexander V. Mukhomedzyanov – Cand. Sc. (Med.), Research Officer at the Laboratory of Experimental Cardiology, Cardiology Research Institute.
Kievskaya str. 111A, Tomsk 634012
M. Sirotina
Russian Federation
Maria Sirotina – Junior Research Officer at the Laboratory of Experimental Cardiology, Cardiology Research Institute.
Kievskaya str. 111A, Tomsk 634012
B. K. Kurbatov
Russian Federation
Boris K. Kurbatov – Junior Research Officer at the Laboratory of Experimental Cardiology, Cardiology Research Institute.
Kievskaya str. 111A, Tomsk 634012
V. N. Azev
Russian Federation
Viatcheslav N. Azev – Cand. Sc. (Chem.), Senior Research Officer.
Nauki ave. 6, Pushchino 142290
G. Z. Sufianova
Russian Federation
Galina Z. Sufianova – Dr. Sc. (Med.), Professor, Head of the Department of Pharmacology, Tyumen State Medical University
Odesskaya str. 54, Tyumen 625023
M. S. Khlestkina
Russian Federation
Maria S. Khlestkina – Cand. Sc. (Med.), Associate Professor at the Department of Pharmacology.
Odesskaya str. 54, Tyumen 625023
L. N. Maslov
Russian Federation
Leonid N. Maslov – Dr. Sc. (Med.), Professor, Head of the Laboratory of Experimental Cardiology, Cardiology Research Institute.
Kievskaya str. 111A, Tomsk 634012
References
1. Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013; 369(10): 901-909. doi: 10.1056/NEJMoa1208200
2. Fabris E, Kilic S, Schellings DAAM, Ten Berg JM, Kennedy MW, van Houwelingen KG, et al. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart. 2017; 103(19): 1515-1520. doi: 10.1136/heartjnl-2017-311181
3. Olier I, Sirker A, Hildick-Smith DJR, Kinnaird T, Ludman P, de Belder MA, et al. British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart. 2018; 104(20): 1683-1690. doi: 10.1136/heartjnl-2017-312366
4. Basi MB, Lemor A, Gorgis S, Taylor AM, Tehrani B, Truesdell AG, et al. National Cardiogenic Shock Initiative Investigators. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv. 2022; 99(3): 650-657. doi: 10.1002/ccd.29895
5. Liakopoulos OJ, Schlachtenberger G, Wendt D, Choi YH, Slottosch I, Welp H, et al. Early clinical outcomes of surgical myocardial revascularization for acute coronary syndromes complicated by cardiogenic shock: A report from the North-Rhine-Westphalia Surgical Myocardial Infarction Registry. J Am Heart Assoc. 2019; 8(10): e012049. doi: 10.1161/JAHA.119.012049
6. Braile-Sternieri MCVB, Mustafa EM, Ferreira VRR, Braile Sabino S, Braile Sternieri G, Buffulin de Faria LA, et al. Main considerations of cardiogenic shock and its predictors: Systematic review. Cardiol Res. 2018; 9(2): 75-82. doi: 10.14740/cr715w
7. McCartney PJ, Berry C. Redefining successful primary PCI. Eur Heart J Cardiovasc Imaging. 2019; 20(2): 133-135. doi: 10.1093/ehjci/jey159
8. Mukhomedzyanov AV, Zhuk VV, Maslov LN, Shipunov AI, Andrienko OS, Gadirov RM. Cardioprotective effect of opioids, derivatives of amide N-methyl-2-(pirrolidin-1-yl)cyclohexyl-1-amine, under conditions of ischemia/reperfusion of the heart. Bull Exp Biol Med. 2021; 170(6): 710-713. doi: 10.1007/s10517-021-05138-y
9. Maslov LN, Mukhomedzyanov AV, Tsibulnikov SY, Suleiman MS, Khaliulin I, Oeltgen PR. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur J Pharmacol. 2021; 907: 174302. doi: 10.1016/j.ejphar.2021.174302
10. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015; 116(4): 674-699. doi: 10.1161/CIRCRESAHA.116.305348
11. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003; 83(4): 1113-1151. doi: 10.1152/physrev.00009.2003
12. Mukhomedzyanov AV, Popov SV, Maslov LN. δ2-opioid receptors as a target in designing new cardioprotective drugs: the role of protein kinase C, AMPK, and sarcolemmal KATP channels. Bull Exp Biol Med. 2022; 173(1): 33-36. doi: 10.1007/s10517022-05487-2
13. Meyerson FZ. Pathogenesis and prevention of stress and ischemic heart damage. Moscow: Meditsina; 1984. (In Russ.).
14. Bilenko MV. Ischemic and reperfusion injuries of organs. Moscow: Meditsina; 1989. (In Russ.).
15. Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med. 2014; 24(5): 202-205. doi: 10.1016/j.tcm.2014.03.003
16. Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015; 5(4): 1841-1875. doi: 10.1002/cphy.c150006
17. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015; 6: 524-551. doi: 10.1016/j.redox.2015.08.020
18. Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res. 1987; 61(5): 757-760. doi: 10.1161/01.res.61.5.757
19. Zweier JL, Rayburn BK, Flaherty JT, Weisfeldt ML. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest. 1987; 80(6): 1728-1734. doi: 10.1172/JCI113264
20. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin tap alpha phenyl N-tert-butyl nitrone. J Clin Invest. 1988; 82(2): 476-485. doi: 10.1172/JCI113621
21. Näslund U, Häggmark S, Johansson G, Marklund SL, Reiz S, Oberg A. Superoxide dismutase and catalase reduce infarct size in a porcine myocardial occlusion-reperfusion model. J Mol Cell Cardiol. 1986; 18(10): 1077-1084. doi: 10.1016/s0022-2828(86)80294-2
22. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. N2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol. 1986; 8(5): 1161-1168. doi: 10.1016/s0735-1097(86)80396-5
23. Bolli R, Zhu WX, Hartley CJ, Michael LH, Repine JE, Hess ML, et al. Attenuation of dysfunction in the postischemic ‘stunned’ myocardium by dimethylthiourea. Circulation. 1987; 76(2): 458-468. doi: 10.1161/01.cir.76.2.458
24. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo and in vitro characterization. Life Sci. 2007; 81(15): 1223-1227. doi: 10.1016/j.lfs.2007.08.031
25. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res. 1989; 65(3): 607-622. doi: 10.1161/01.res.65.3.607
26. Tang XL, Takano H, Rizvi A, Turrens JF, Qiu Y, Wu WJ, et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol Heart Circ Physiol. 2002; 282(1): H281-H291. doi: 10.1152/ajpheart.2002.282.1.H281
27. Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, et al. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res. 1993; 73(4): 705-723. doi: 10.1161/01.res.73.4.705
28. Sementsov AS, Naryzhnaya NV, Sirotina MA, Maslov LN. The role of reactive oxygen species in the infarct-limiting effect of hypoxic preconditioning. Regional Blood Circulation and Microcirculation. 2021; 20(2): 87-91. (In Russ.). doi: 10.24884/1682-66552021-20-2-87-91
29. Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev. 2018; 14(4): 290-300. doi: 10.2174/1573403X14666180702152436
30. Schultz JEJ, Hsu AK, Gross GJJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (δ)opioid receptor in the intact rat heart. Mol Cell Cardiol. 1997; 29(8): 2187-2195. doi: 10.1006/jmcc.1997.0454
31. Pınar N, Kaplan M, Özgür T, Özcan O. Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomed Pharmacother. 2018; 102: 758-764. doi: 10.1016/j.biopha.2018.03.147
32. Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, et al. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling. Cardiovasc Res. 2006; 70: 315-334. doi: 10.1016/j.cardiores.2005.11.030
33. Fettiplace MR, Kowal K, Ripper R, Young A, Lis K, Rubinstein I, et al. Insulin signaling in bupivacaine-induced cardiac toxicity: Sensitization during recovery and potentiation by lipid emulsion. Anesthesiology. 2016; 124: 428-442. doi: 10.1097/aln.0000000000000974
34. Lasley RD, Keith BJ, Kristo G, Yoshimura Y, Mentzer RM Jr. Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent. Am J Physiol Heart Circ Physiol. 2005; 289: H785-H791. doi: 10.1152/ajpheart.01008.2004
Review
For citations:
Popov S.V., Mukhomedzyanov A.V., Sirotina M., Kurbatov B.K., Azev V.N., Sufianova G.Z., Khlestkina M.S., Maslov L.N. The role of reactive oxygen species and redoxsensitive protein kinases in the infarction-limiting effect of opioid peptide deltorphin II in cardiac reperfusion in rats. Acta Biomedica Scientifica. 2023;8(2):254-262. https://doi.org/10.29413/ABS.2023-8.2.25