Preview

Acta Biomedica Scientifica

Расширенный поиск

Циркадный ритм углеводного обмена в норме и при патологии

https://doi.org/10.29413/ABS.2023-8.2.12

Аннотация

В статье представлен обзор сведений об основных механизмах циркадной регуляции углеводного обмена, а также её роли в поддержании энергетического гомеостаза, рассмотрена молекулярно-генетическая структура циркадной системы. Освещена роль жировой ткани и других органов и систем в циркадном ритме углеводного обмена, как в норме, так и при ожирении и сахарном диабете 2-го типа. Особое внимание уделено суточной ритмике эндокринных факторов, определяющих метаболические паттерны таких гормонов, как кортизол, соматотропный гормон, мелатонин. В статье отдельно обсуждаются гендерные различия циркадной регуляции энергетического и углеводного метаболизма, а также их изменения в различные возрастные периоды. Проведён подробный обзор механизмов изменения утилизации глюкозы, реактивности инсулярного аппарата поджелудочной железы и чувствительности периферических тканей к инсулину в разное время суток у лиц с нормальной массой тела, андроидным и гиноидным типами ожирения, как у женщин, так и у мужчин. Обсуждены защитные факторы в структуре циркадной регуляции энергетического метаболизма, препятствующие развитию сахарного диабета и сердечно-сосудистых заболеваний у лиц с так называемым «метаболически здоровым» типом ожирения. Рассмотрены различные варианты нарушений циркадных ритмов, механизмы их возникновения, а также экзогенные и эндогенные факторы, приводящие к нарушениям циркадного ритма углеводного обмена, такие как сменная работа, нарушение естественного и искусственного освещения, смена часовых поясов, расстройства сна. Приведённые сведения способствуют формированию нового взгляда на патогенетические механизмы развития нарушений углеводного обмена при различных типах ожирения у мужчин и женщин, что даёт основания для поиска эффективных методов профилактики и лечения этих заболеваний, определения научнообоснованных режимов питания и физических нагрузок, а также подходов к их медикаментозной терапии.

Об авторах

М. Ю. Сорокин
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Россия

Сорокин Максим Юрьевич – аспирант лаборатории эндокринологии.

630060, Новосибирск, ул. Тимакова, 2



Б. Б. Пинхасов
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»; ФГБОУ ВО «Новосибирский государственный медицинский университет» Минздрава России
Россия

Пинхасов Борис Борисович – доктор медицинских наук, заведующий кафедрой патологической физиологии и клинической патофизиологии, Новосибирский ГМУ; ведущий научный сотрудник лаборатории эндокринологии, Федеральный ИЦФТМ.

630060, Новосибирск, ул. Тимакова, 2; 630091, Новосибирск, Красный просп., 52



В. Г. Селятицкая
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Россия

Селятицкая Вера Георгиевна – доктор медицинских наук, профессор, главный научный сотрудник, заведующая лабораторией эндокринологии.

630060, Новосибирск, ул. Тимакова, 2



Список литературы

1. Panda S. Circadian physiology of metabolism. Science. 2016; 354(6315): 1008-1015. doi: 10.1126/science.aah4967

2. Пятин В.Ф., Романчук Н.П., Булгакова С.В., Романов Д.В., Сиротко И.И., Давыдкин И.Л. и др. Циркадианный стресс Homo Sapiens: новые нейрофизиологические, нейроэндокринные и психонейроиммунные механизмы. Бюллетень науки и практики. 2020; 6(6): 115-135. doi: 10.33619/2414-2948/55/16

3. Кицышин В.П., Салухов В.В., Демидова Т.А., Сардинов Р.Т. Циркадная модель регуляции углеводного обмена в норме. Consilium Medicum. 2016; 18(4): 38-42.

4. Froy O. Metabolism and circadian rhythms – implications for obesity. Endocrine Reviews. 2010; 31(1): 1-24. doi: 10.1210/er.2009-0014

5. Randler C, Engelke J. Gender differences in chronotype diminish with age: A meta-analysis based on morningness/ chronotype questionnaires. Chronobiol Int. 2019; 36(7): 888-905. doi: 10.1080/07420528.2019.1585867

6. Kalsbeek A, Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab. 2014; 3(4): 372-383. doi: 10.1016/j.molmet.2014.03.002

7. Peret J, Macaire I, Chanez M. Schedule of protein ingestion, nitrogen and energy utilization and circadian rhythm of hepatic glycogen, plasma corticosterone and insulin in rats. J Nutr. 1973; 103(6): 866-874. doi: 10.1093/jn/103.6.866

8. Armstrong SA. Chronometric approach to the study of feeding behavior. Neurosci Biobehav Rev. 1980; 4(1): 27-53. doi: 10.1016/0149-7634(80)90024-x

9. Южакова А.Е., Нелаева А.А., Хасанова Ю.В. Развитие нарушений углеводного обмена с позиций хронобиологии. Медицинский совет. 2018; 4: 42-47. doi: 10.21518/2079-701X2018-4-42-47

10. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018; 84: 11-27. doi: 10.1016/j.metabol.2017.11.017

11. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445-462. doi: 10.1146/annurev-neuro-060909-153128

12. Цветкова Е.С., Романцова Т.И., Полуэктов М.Г., Рунова Г.Е., Глинкина И.В., Фадеев В.В. Значение мелатонина в регуляции метаболизма, пищевого поведения, сна и перспективы его применения при экзогенно-конституциональном ожирении. Ожирение и метаболизм. 2021; 18(2): 112-124. doi: 10.14341/omet12279

13. Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 2013; 366(2): 163-169. doi: 10.1016/j.mce.2012.06.017

14. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000; 14(23): 2950-2961. doi: 10.1101/gad.183500

15. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biology. 2007; 5(2): e34. doi: 10.1371/journal.pbio.0050034

16. Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science (New York, NY). 2012; 337(6091): 189-194. doi: 10.1126/science.1222804

17. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014; 24(2): 9099. doi: 10.1016/j.tcb.2013.07.002

18. Aparicio NJ, Puchulu FE, Gagliardino JJ, Ruiz M, Llorens JM, Ruiz J, et al. Circadian variation of the blood glucose, plasma insulin and human growth hormone levels in response to an oral glucose load in normal subjects. Diabetes. 1974; 23(2): 132-137. doi: 10.2337/diab.23.2.132

19. Wojtczak-Jaroszowa J. Physiological and clinical aspects of circadian variations in glucose tolerance. Chronobiologia. 1977; 4(4): 363-384.

20. Hulmán A, Færch K, Vistisen D, Karsai J, Nyári TA, Tabák AG, et al. Effect of time of day and fasting duration on measures of glycaemia: Analysis from the Whitehall II Study. Diabetologia. 2013; 56(2): 294-297. doi: 10.1007/s00125-012-2770-3

21. Pinkhasov BB, Selyatitskaya VG, Astrakhantseva EL, Anufrienko EV. Circadian rhythms of carbohydrate metabolism in women with different types of obesity. Bull Exp Biol Med. 2016; 161(3): 323-326. doi: 10.1007/s10517-016-3406-2

22. Lee A, Ader M, Bray GA, Bergman RN. Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes. 1992; 41(6): 750-759. doi: 10.2337/diab.41.6.750

23. Pisu E, Diana A, Lombardi A, Cassader M, Pagano G. Diurnal variations in insulin secretion and insulin sensitivity in aged subjects. Acta Diabetol Lat. 1980; 17(2): 153-160. doi: 10.1007/BF02580997

24. Bo S, Fadda M, Castiglione A, Ciccone G, De Francesco A, Fedele D, et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes (Lond). 2015; 39(12): 1689-1695. doi: 10.1038/ijo.2015.138

25. Boden G, Ruiz J, Urbain JL, Chen X. Evidence for a circadian rhythm of insulin secretion. Am J Physiol. 1996; 271(2 Pt 1): E246E252. doi: 10.1152/ajpendo.1996.271.2.E246

26. Van Moorsel D, Hansen J, Havekes B, Scheer FA, Jörgensen JA, Hoeks J, et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 2016; 5(8): 635-645. doi: 10.1016/j.molmet.2016.06.012

27. Hansen J, Timmers S, Moonen-Kornips E, Duez H, Staels B, Hesselink MK, et al. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Sci Rep. 2016; 6: 35047. doi: 10.1038/srep35047

28. Macauley M, Smith FE, Thelwall PE, Hollingsworth KG, Taylor R. Diurnal variation in skeletal muscle and liver glycogen in humans with normal health and type 2 diabetes. Clin Sci (Lond). 2015; 128(10): 707-713. doi: 10.1042/CS20140681

29. Carrasco‐Benso MP, Rivero‐Gutierrez B, Lopez‐Minguez J, Anzola A, Diez‐Noguera A, Madrid JA, et al. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. FASEB J. 2016; 30(9): 3117-3123. doi: 10.1096/fj.201600269RR

30. Пинхасов Б.Б., Сорокин М.Ю., Янковская С.В., Михайлова Н.И., Селятицкая В.Г. Гендерные особенности циркадного ритма углеводного обмена. Сибирский научный медицинский журнал. 2021; 41(2): 85-91. doi: 10.18699/SSMJ20210212

31. Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest. 1991; 88(3): 934-942. doi: 10.1172/JCI115396

32. Plat L, Leproult R, L’Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS, et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab. 1999; 84(9): 30823092. doi: 10.1210/jcem.84.9.5978

33. Buonfiglio D, Parthimos R, Dantas R, Silva RC, Gomes G, Amdrade-Silva J, et al. Melatonin absence leads to long-term leptin resistance and overweight in rats. Front Endocrinol. 2018; 9: 122. doi: 10.3389/fendo.2018.00122

34. Vriend J, Reiter RJ. Melatonin feedback on clock genes: A theory involving the proteasome. J Pineal Res. 2015; 58(1): 1-11. doi: 10.1111/jpi.12189

35. Costes S, Boss M, Thomas AP, Matveyenko AV. Activation of melatonin signaling promotes β-cell survival and function. Mol Endocrinol. 2015; 29(5): 682-692. doi: 10.1210/me.2014-1293

36. Ивашкин В.Т., Маевская М.В. Липотоксичность и метаболические нарушения при ожирении. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2010; 1: 4-13.

37. Blüher S, Mantzoros CS. The role of leptin in regulating neuroendocrine function in humans. J Nutr. 2004; 134(9): 2469S2474S. doi: 10.1093/jn/134.9.2469S

38. Brøns C, Grunnet LG. Mechanisms in endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: A causal mechanism or an innocent bystander? Eur J Endocrinol. 2017; 176(2): R67-R78. doi: 10.1530/EJE-16-0488

39. McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, Barger LK, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr. 2017; 106(5): 1213-1219. doi: 10.3945/ajcn.117.161588

40. Obayashi K, Yamagami Y, Kurumatani N, Saeki K. Bedroom lighting environment and incident diabetes mellitus: A longitudinal study of the HEIJO-KYO cohort. Sleep Med. 2020; 65: 1-3. doi: 10.1016/j.sleep.2019.07.006

41. Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun. 2021; 12(1): 2862. doi: 10.1038/s41467-021-22922-6

42. Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, et al. Night shift work, genetic risk, and type 2 diabetes in the UK biobank. Diabetes Care. 2018; 41(4): 762-769. doi: 10.2337/dc17-1933

43. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. PLoS Med. 2011; 8(12): e1001141. doi: 10.1371/journal.pmed.1001141

44. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. The relationship between obesity and exposure to light at night: Cross-sectional analyses of over 100,000 women in the breakthrough generations study. Am J Epidemiol. 2014; 180(3): 245-250. doi: 10.1093/aje/kwu117

45. Obayashi K, Saeki K, Kurumatani N. Ambient light exposure and changes in obesity parameters: A longitudinal study of the HEIJO-KYO cohort. J Clin Endocrinol Metab. 2016; 101(9): 3539-3547. doi: 10.1210/jc.2015-4123

46. Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N. Independent associations of exposure to evening light and nocturnal urinary melatonin excretion with diabetes in the elderly. Chronobiol Int. 2014; 31(3): 394-400. doi: 10.3109/07420528.2013.864299

47. Reid KJ, Santostasi G, Baron KG, Wilson J, Kang J, Zee PC. Timing and intensity of light correlate with body weight in adults. PloS One. 2014; 9(4): e92251. doi: 10.1371/journal.pone.0092251

48. Park YMM, White AJ, Jackson CL, Weinberg CR, Sandler DP. Association of exposure to artificial light at night while sleeping with risk of obesity in women. JAMA Intern Med. 2019; 179(8): 10611071. doi: 10.1001/jamainternmed.2019.0571

49. Fukushige H, Fukuda Y, Tanaka M, Inami K, Wada K, Tsumura Y, et al. Effects of tryptophan-rich breakfast and light exposure during the daytime on melatonin secretion at night. J Physiol Anthropol. 2014; 33(1): 33. doi: 10.1186/1880-6805-33-33

50. Алексеева Н.С., Салмина-Хвостова О.И., Белобородова Е.В. Взаимосвязь нарушений пищевого поведения с уровнем мелатонина и серотонина при метаболическом синдроме. Сибирский вестник психиатрии и наркологии. 2016; 4(93): 39-44.

51. Успенский Ю.П., Соусова Я.В., Фоминых Ю.А. Оценка роли гормонов в формировании пищевого поведения у пациентов с метаболическим синдромом. Дневник Казанской медицинской школы. 2019; 2(24): 8-14.

52. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012; 22(10): 939-943. doi: 10.1016/j.cub.2012.03.038

53. Koopman AD, Rauh SP, van ‘t Riet E, Groeneveld L, van Der Heijden AA, Elders PJ, et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: The new Hoorn study. J Biol Rhythms. 2017; 32(4): 359-368. doi: 10.1177/0748730417713572

54. Jin HK. Diabetes and circadian rhythm. J Korean Diabetes. 2020; 21(2): 59-63. doi: 10.4093/jkd.2020.21.2.59

55. Южакова А.Е., Нелаева А.А., Хасанова Ю.В., Медведева И.В. Факторы риска нарушений углеводного обмена с позиций хронобиологии. Вопросы питания. 2020; 89(6): 23-30. doi: 10.24411/0042-8833-2020-10075

56. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci USA. 2014; 111(48): 302-317. doi: 10.1073/pnas.1412021111

57. Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES. Mismatch of sleep and work timing and risk of type 2 diabetes. Diabetes Care. 2015; 38(9): 1707-1713. doi: 10.2337/dc15-0302

58. Chattu VK, Chattu SK, Burman D, Spence DW, PandiPerumal SR. The interlinked rising epidemic of insufficient sleep and diabetes mellitus. Healthcare (Basel). 2019; 7(1): 37. doi: 10.3390/healthcare7010037

59. Hutchison AT, Wittert GA, Heilbronn LK. Matching meals to body clocks-impact on weight and glucose metabolism. Nutrients. 2017; 9(3): 222. doi: 10.3390/nu9030222

60. Cribbet MR, Logan RW, Edwards MD, Hanlon E, Bien Peek C, Stubblefield JJ, et al. Circadian rhythms and metabolism: From the brain to the gut and back again. Ann N Y Acad Sci. 2016; 1385(1): 21-40. doi: 10.1111/nyas.13188

61. Gu C, Brereton N, Schweitzer A, Cotter M, Duan D, Børsheim E, et al. Metabolic effects of late dinner in healthy volunteers – a randomized crossover clinical trial. J Clin Endocrinol Metab. 2020; 105(8): 2789-2802. doi: 10.1210/clinem/dgaa354

62. Sato M, Nakamura K, Ogata H, Miyashita A, Nagasaka S, Omi N, et al. Acute effect of late evening meal on diurnal variation of blood glucose and energy metabolism. Obes Res Clin Pract. 2011; 5(3): e169-e266. doi: 10.1016/j.orcp.2011.02.001

63. Lopez-Minguez J, Saxena R, Bandín C, Scheer FA, Garaulet M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clin Nutr. 2018: 37(4): 1133-1140. doi: 10.1016/j.clnu.2017.04.003

64. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, et al. Common variant in MTNRIB associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009; 41(1): 82-89. doi: 10.1038/ng.288

65. Mulder H. Melatonin signalling and type 2 diabetes risk: Too little, too much or just right? Diabetologia. 2017; 60(5): 826-829. doi: 10.1007/s00125-017-4249-8

66. Garaulet M, Gómez-Abellán P, Rubio-Sastre P, Madrid JA., Saxena R, Scheer FA. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism. 2015; 64(12): 1650-1657. doi: 10.1016/j.metabol.2015.08.003

67. Morse SA, Ciechanowski PS, Katon WJ, Hirsch IB. Isn’t this just bedtime snacking? The potential adverse effects of night-eating symptoms on treatment adherence and outcomes in patients with diabetes. Diabetes Care. 2006; 29(8): 1800-1804. doi: 10.2337/dc06-0315

68. Wehrens SM, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, et al. Meal timing regulates the human circadian system. Curr Biol. 2017; 27(12): 1768e3-1775.e3. doi: 10.1016/j.cub.2017.04.059

69. Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy MF, et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A. 2015; 112(48): E6691-E6698. doi 10.1073/pnas.1519807112

70. Van der Vinne V, Swoap SJ, Vajtay TJ, Weaver DR. Desynchrony between brain and peripheral clocks caused by CK1δ/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proc Natl Acad Sci U S A. 2018; 115(10): E2437-E2446. doi: 10.1073/pnas.1712324115

71. Leung GKW, Huggins CE, Bonham MP. Effect of meal timing on postprandial glucose responses to a low glycemic index meal: A crossover trial in healthy volunteers. Clin Nutr. 2019; 38(1): 465-471. doi: 10.1016/j.clnu.2017.11.010

72. Kammerlander AA, Lyass A, Mahoney TF, Massaro JM, Long MT, Vasan RS, et al. Sex differences in the associations of visceral adipose tissue and cardiometabolic and cardiovascular disease risk: The Framingham heart study. J Am Heart Assoc. 2021; 10(11): e019968. doi: 10.1161/JAHA.120.019968

73. Pinkhasov BB, Selyatitskaya VG, Karapetyan AR, Lutov YV. Association of aging-related obesity and metabolic syndrome in men. Adv Gerontol. 2016; 6(3): 224-230. doi: 10.1134/s2079057016030085

74. Pinkhasov BB, Selyatitskaya VG, Karapetyan AR, Galanova ZM, Dobrovolskaya NP. Age dependence of association between metabolic syndrome and obesity among women. Adv Gerontol. 2013; 3(3): 205-210. doi: 10.1134/S2079057013030107

75. Мустафина С.В., Винтер Д.А., Щербакова Л.В., Малютина С.К., Рагино Ю.И., Рымар ОД. Половозрастные особенности распространённости метаболически здорового фенотипа ожирения. Бюллетень сибирской медицины. 2020; 19(1): 76-84. doi: 10.20538/1682-0363-2020-1-76-84

76. Селятицкая В.Г., Пинхасов Б.Б., Карапетян А.Р., Кузьминова О.И. Адипокины и риск развития метаболических нарушений при разных типах ожирения у женщин. Терапевтический архив. 2015; 87(10): 80-84.

77. Isherwood CM, Van der Veen DR, Johnston JD, Skene DJ. Twenty four hour rhythmicity of circulating metabolites: Effect of body mass and type 2 diabetes. FASEB J. 2017; 31(12): 5557-5567. doi: 10.1096/fj.201700323R

78. Shapiro ET, Polonsky KS, Copinschi G, Bosson D, Tillil H, Blacman J, et al. Nocturnal elevation of glucose levels during fasting in noninsulin-dependent diabetes. J Clin Endocrinol Metab. 1991; 72(2): 444-454. doi: 10.1210/jcem-72-2-444

79. Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006; 49(7): 1619-1628. doi: 10.1007/s00125-0060273-9

80. Hogenboom R, Kalsbeek MJ, Korpel NL, de Goede P, Koenen M, Buijs RM, et al. Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia. 2019; 62(11): 2088-2093. doi: 10.1007/s00125-0194953-7


Рецензия

Для цитирования:


Сорокин М.Ю., Пинхасов Б.Б., Селятицкая В.Г. Циркадный ритм углеводного обмена в норме и при патологии. Acta Biomedica Scientifica. 2023;8(2):124-137. https://doi.org/10.29413/ABS.2023-8.2.12

For citation:


Sorokin M.Yu., Pinkhasov B.B., Selyatitskaya V.G. Circadian rhythm of carbohydrate metabolism in health and disease. Acta Biomedica Scientifica. 2023;8(2):124-137. https://doi.org/10.29413/ABS.2023-8.2.12

Просмотров: 3553


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)