Preview

Acta Biomedica Scientifica

Advanced search

The role of circulating miR-19b miRNA in predicting the outcome of COVID-19

https://doi.org/10.29413/ABS.2023-8.2.3

Abstract

Background. MicroRNAs are short (20–22 nucleotides) non-coding RNAs that can posttranscriptionally regulate gene expression and are considered a regulator of the innate immunity system. Previously, many papers were published on the prediction of the interaction of the single-stranded (+)RNA virus SARS-CoV-2 with human microRNAs, as well as on the profile of circulating microRNAs in patients with COVID-19 of varying severity. However, no works are analyzing the possible contribution of miRNAs circulating in blood plasma to the severity of COVID-19.

The aim. To study the features of the blood plasma microRNA profile of patients with different severity of the new coronavirus infection COVID-19 and to evaluate the possibility of microRNA interaction with the SARS-CoV-2 genome.

Materials and methods. The results of NGS sequencing of plasma miRNAs of 3 recovered and 8 deceased patients with a highly severe form of COVID-19 were studied. Differentially presented microRNAs were determined using bioinformatics methods, and their binding sites with the SARS-CoV-2 genome were predicted.

Results. This study demonstrates that in patients who have recovered from a highly severe form of COVID-19, the level of hsa-miR-19b-3p in the blood plasma is significantly increased. This microRNA makes up about 1.5 % of all circulating microRNAs and can bind to SARS-CoV-2 regions encoding proteins that suppress intracellular immunity mechanisms (NSP3, NSP9). In addition, this miRNA can stimulate the functional activity and proliferation of cytotoxic T-lymphocytes, one of the critical components of acquired cellular immunity against SARS-CoV-2.

Conclusion. The results of the study can be used in the development of antiviral drugs based on RNA interference, as well as in the development of predictive test systems to optimize the tactics of treating patients with COVID-19.

About the Authors

M. Yu. Shkurnikov
National Research University Higher School of Economics; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Maxim Yu. Shkurnikov – Cand. Sc. (Med.), Head of the Laboratory for Research on Molecular Mechanisms of Longevity; Head of the Laboratory for Research on Molecular Mechanisms of Longevity, Faculty of Biology and Biotechnology, NRU Higher School of Economics; Engineer, Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov IBCh RAS; Research Officer, SC FHHRP.

Myasnitskaya str. 20, Moscow 101000; Miklukho-Maklaya str. 16/10, Moscow 117997; Timiryazeva str. 16, Irkutsk 664003



S. I. Kolesnikov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Sergey I. Kolesnikov – Dr. Sc. (Med.), Professor, Academician of RAS, Leading Research Officer, SC FHHRP.

Myasnitskaya str. 20, Moscow 101000; Timiryazeva str. 16, Irkutsk 664003



References

1. Diamond MS, Kanneganti TD. Innate immunity: The first line of defense against SARS-CoV-2. Nat Immunol. 2022; 23(2): 165-176. doi: 10.1038/s41590-021-01091-0

2. Tam JCH, Jacques DA. Intracellular immunity: Finding the enemy within – how cells recognize and respond to intracellular pathogens. J Leukoc Biol. 2014; 96(2): 233-244. doi: 10.1189/jlb.4RI0214-090R

3. Leon-Icaza SA, Zeng M, Rosas-Taraco AG. microRNAs in viral acute respiratory infections: Immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019; 1(1): 1. doi: 10.1186/s41544018-0004-7

4. Usuelli V, Loretelli C, Seelam AJ, Pastore I, D’Addio F, Ben Nasr M, et al. Novel soluble mediators of innate immune system activation in solid allograft rejection. Transplantation. 2022; 106(3): 500-509. doi: 10.1097/TP.0000000000003834

5. Zou L, He J, Gu L, Shahror RA, Li Y, Cao T, et al. Brain innate immune response via miRNA-TLR7 sensing in polymicrobial sepsis. Brain Behav Immun. 2022; 100: 10-24. doi: 10.1016/j.bbi.2021.11.007

6. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007; 13(10): 1241-1247. doi: 10.1038/nm1639

7. Ingle H, Kumar S, Raut AA, Mishra A, Kulkarni DD, Kameyama T, et al. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal. 2015; 8(406): ra126. doi: 10.1126/scisignal.aab3183

8. Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E, Chapnik E, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014; 506(7487): 245-248. doi: 10.1038/nature12869

9. Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, et al. Stabilization of hepatitis C virus RNA by an Ago2miR-122 complex. Proc Natl Acad Sci USA. 2012; 109(3): 941-946. doi: 10.1073/pnas.1112263109

10. Gantier MP, Sadler AJ, Williams BRG. Fine‐tuning of the innate immune response by microRNAs. Immunol Cell Biol. 2007; 85(6): 458-462. doi: 10.1038/sj.icb.7100091

11. Iizasa H, Kim H, Kartika AV, Kanehiro Y, Yoshiyama H. Role of viral and host microRNAs in immune regulation of Epstein – Barr virus-associated diseases. Front Immunol. 2020; 11: 367. doi: 10.3389/fimmu.2020.00367

12. Khan MdAAK, Sany MdRU, Islam MdS, Islam ABMMdK. Epigenetic regulator miRNA pattern differences among SARSCoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet. 2020; 11: 765. doi: 10.3389/fgene.2020.00765

13. Lukiw WJ. microRNA heterogeneity, innate-immune defense and the efficacy of SARS-CoV-2 infection – A commentary. ncRNA. 2021; 7(2): 37. doi: 10.3390/ncrna7020037

14. Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ. 2020; 8: e9994. doi: 10.7717/peerj.9994

15. Tang H, Gao Y, Li Z, Miao Y, Huang Z, Liu X, et al. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID‐19. Clin Transl Med. 2020; 10(6): e200. doi: 10.1002/ctm2.200

16. Madè A, Greco S, Vausort M, Miliotis M, Schordan E, Baksi S, et al. Association of miR-144 levels in the peripheral blood with COVID-19 severity and mortality. Sci Rep. 2022; 12(1): 20048. doi: 10.1038/s41598-022-23922-2

17. Loher P, Karathanasis N, Londin E, F. Bray P, Pliatsika V, Telonis AG, et al. IsoMiRmap: fast, deterministic and exhaustive mining of isomiRs from short RNA-seq datasets. Bioinformatics. 2021; 37(13): 1828-1838. doi: 10.1093/bioinformatics/btab016

18. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 2007; 27(1): 91-105. doi: 10.1016/j.molcel.2007.06.017

19. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550. doi: 10.1186/s13059-014-0550-8

20. Shkurnikov MYu, Knyazev EN, Fomicheva KA, Mikhailenko DS, Nyushko KM, Saribekyan EK, et al. Analysis of plasma microRNA associated with hemolysis. Bull Exp Biol Med. 2016; 160(6): 748-750. doi: 10.1007/s10517-016-3300-y

21. Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010; 207(7): 1351-1358. doi: 10.1084/jem.20100458

22. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-297. doi: 10.1016/S00928674(04)00045-5

23. Russo F, Di Bella S, Bonnici V, Laganà A, Rainaldi G, Pellegrini M, et al. A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs. BMC genomics. 2014; 15 Suppl 3: S4. doi: 10.1186/1471-2164-15-S3-S4

24. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: An integrated review of literature. Mutat Res. 2011; 717(1-2): 77-84. doi: 10.1016/j.mrfmmm.2011.03.008

25. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56(11): 1733-1741. doi: 10.1373/clinchem.2010.147405

26. Fröhlich E, Mercuri A, Wu S, Salar-Behzadi S. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front Pharmacol. 2016; 7: 181. doi: 10.3389/fphar.2016.00181

27. Makarova J, Turchinovich A, Shkurnikov M, Tonevitsky A. Extracellular miRNAs and cell–cell communication: Problems and prospects. Trends Biochem Sci. 2021; 46(8): 640-651. doi: 10.1016/j.tibs.2021.01.007

28. Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020; 183(5): 1325e211339.e21. doi: 10.1016/j.cell.2020.10.004

29. Klatte N, Shields DC, Agoni C. Modelling the transitioning of SARS-CoV-2 nsp3 and nsp4 lumenal regions towards a more stable state on complex formation. Int J Mol Sci. 2022; 24(1): 720. doi: 10.3390/ijms24010720

30. Yin LB, Song CB, Zheng JF, Fu YJ, Qian S, Jiang YJ, et al. Elevated expression of miR-19b enhances CD8+ T cell function by targeting PTEN in HIV infected long term non-progressors with sustained viral suppression. Front Immunol. 2019; 9: 3140. doi: 10.3389/fimmu.2018.03140


Review

For citations:


Shkurnikov M.Yu., Kolesnikov S.I. The role of circulating miR-19b miRNA in predicting the outcome of COVID-19. Acta Biomedica Scientifica. 2023;8(2):26-32. https://doi.org/10.29413/ABS.2023-8.2.3

Views: 1320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)