Preview

Acta Biomedica Scientifica

Advanced search

Production of reactive oxygen species by neutrophils and macrophages of F1 hybrid mice (C57Bl6xCBA) in response to stimulation with cucurbit(n)urils (n = 6, 7, 8)

https://doi.org/10.29413/ABS.2022-7.5-1.26

Abstract

   Background. Due to their very small size, nanomaterials, in particular cucurbiturils, have unique physical and chemical properties that find their application in medicine. However, the toxicity of cucurbiturils is not fully understood; in particular, we are interested in the immunological safety of their use. One of the mechanisms of nanotoxicity is the formation of reactive oxygen species (ROS) by macrophages and neutrophils. Hyperproduction of ROS can lead to oxidative stress and further damage to cell DNA with loss of physiological function and development of pathology.
   The aim. Evaluation of the effect of cucurbit[n]urils (n = 6, 7, 8) on the production of reactive oxygen species by mice macrophages and neutrophils.
   Materials and methods. F1 hybrid mice (CBAxC57Bl/6) aged 2 months (n = 11) were used in the work. Evaluation of superoxide radical production by peritoneal mouse neutrophils and macrophages was carried out by spectrophotometric method for determining the reduction of p-nitroblue tetrazolium (NBT) to formazan.
   Results. It was shown that CB[6] and CB[7] at concentrations of 0.5 and 0.3 mM do not have an inhibitory effect on ROS synthesis, but, on the contrary, significantly increase ROS production by macrophages. In addition, CB[6] 0.3 mM increases the level of ROS in neutrophils.
   Conclusion. Cucurbiturils can lead to an increase in the production of ROS in immunocompetent cells, depending on the concentration used (0.3 mM and higher).

About the Authors

A. A. Aktanova
Scientific Research Institute of Fundamental and Clinical Immunology
Russian Federation

Alina A. Aktanova – Postgraduate, Laboratory Assistant at the Laboratory of Clinical Immunopathology

Yadrintsevskaya str. 14, Novosibirsk 630099



E. A. Pashkina
Scientific Research Institute of Fundamental and Clinical Immunology
Russian Federation

Ekaterina A. Pashkina – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Clinical Immunopathology

Yadrintsevskaya str. 14, Novosibirsk 630099



O. S. Boeva
Novosibirsk National Research State University
Russian Federation

Olga S. Boeva – Student at the V. Zelman Institute of Medicine and Psychology

Pirogova str. 2, Novosibirsk 630090



N. A. Feofanova
Scientific Research Institute of Fundamental and Clinical Immunology
Russian Federation

Natalia A. Feofanova – Cand. Sc. (Biol.), Research Officer at the Laboratory of Clinical Immunopathology

Yadrintsevskaya str. 14, Novosibirsk 630099



V. A. Kozlov
Scientific Research Institute of Fundamental and Clinical Immunology
Russian Federation

Vladimir A. Kozlov – Dr. Sc. (Med.), Professor, Academician of RAS, Scientific Supervisor, Head of the Laboratory of Clinical Immunopathology

Yadrintsevskaya str. 14, Novosibirsk 630099



References

1. Bartosz G. Reactive oxygen species: Destroyers or messengers? Biochem Pharmacol. 2009; 77(8): 1303-1315. doi: 10.1016/j.bcp.2008.11.009

2. Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013; 2013: 942916. doi: 10.1155/2013/942916

3. Nel A., Xia T., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311 (5761): 622-627. doi: 10.1126/science.1114397

4. Yu Z., Li Q., Wang J., Yu Y., Wang Y., Zhou Q., et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett. 2020; 15 (1): 115. doi: 10.1186/s11671-020-03344-7

5. Naha P. C., Byrne H. J. Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol. 2013; 132-133: 61-72. doi: 10.1016/j.aquatox.2013.01.020

6. Kong L., Zepp R. G. Production and consumption of reactive oxygen species by fullerenes. Environ Toxicol Chem. 2011; 31 (1): 136-143. doi: 10.1002/etc.711

7. Li X., Wang L., Liu H., Fu J., Zhen L., Li Y., et al. C60 fullerenes suppress reactive oxygen species toxicity damage in boar sperm. Nanomicro Lett. 2019; 11 (1): 104. doi: 10.1007/s40820-019-0334-5

8. Das D., Assaf K. I., Nau W. M. Applications of cucurbiturils in medicinal chemistry and chemical biology. Front Chem. 2019; 7: 619. doi: 10.3389/fchem.2019.00619

9. Liu S., Tian R., Xu J., Wang L., Sun J., Jiang X., et al. Cucurbit[8] uril-based supramolecular nanocapsules with a multienzymecascade antioxidative effect. Chem Commun (Camb). 2019; 55 (92): 13820-13823. doi: 10.1039/c9cc07085k

10. Fu P. P., Xia Q., Hwang H. M., Ray P. C., Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal. 2014; 22 (1): 64-75. doi: 10.1016/j.jfda.2014.01.005

11. Forman H. J., Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001; 22 (4-5): 189-216. doi: 10.1016/s0098-2997(01)00010-3

12. Sena L. A., Chandel N. S. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012; 48 (2): 158-167. doi: 10.1016/j.molcel.2012.09.025

13. Shadel G. S., Horvath T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015; 163 (3): 560-569. doi: 10.1016/j.cell.2015.10.001

14. Hettiarachchi G., Nguyen D., Wu J., Lucas D., Ma D., Isaacs L., et al. Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS One. 2010; 5 (5): e10514. doi: 10.1371/journal.pone.0010514

15. Gojova A., Guo B., Kota R. S., Rutledge J. C., Kennedy I. M., Barakat A. I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environ Health Perspect. 2007; 115 (3): 403-409. doi: 10.1289/ehp.8497

16. Yang S., Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res. 2017; 126: 97-108. doi: 10.1016/j.phrs.2017.05.004

17. Das D., Assaf K. I., Nau W. M. Applications of cucurbiturils in medicinal chemistry and chemical biology. Front Chem. 2019; 7: 619. doi: 10.3389/fchem.2019.00619

18. Pashkina E. A., Grishina L. V., Lyubimov G. Yu., Kozlov V. A. Effect of tuftsin complex with cucurbit[7]uril on humoral and cellular immune response in vivo. Russian Journal of Immunology. 2014; 8 (3 (17)): 367-369. (In Russ.).

19. Kovalenko E. A, Pashkina E. A., Kanazhevskaya L. Y., Masliy A. N., Kozlov V. A. Chemical and biological properties of a supramolecular complex of tuftsin and cucurbit[7]uril. Int Immunopharmacol. 2017; 47: 199-205. doi: 10.1016/j.intimp.2017.03.032

20. Pashkina E., Aktanova A., Blinova E., Mirzaeva I., Kovalenko E., Knauer N., et al. Evaluation of the immunosafety of cucurbit[n]uril on peripheral blood mononuclear cells in vitro. Molecules. 2020; 25 (15): 3388. doi: 10.3390/molecules25153388

21. Pashkina E., Aktanova A., Mirzaeva I., Kovalenko E., Andrienko I., Knauer N., et al. The effect of cucurbit[7]uril on the antitumor and immunomodulating properties of oxaliplatin and carboplatin. Int J Mol Sci. 2021; 22 (14): 7337. doi: 10.3390/ijms22147337

22. Kopoladze R. A. Regulation of animal experiments – ethics, legislation, alternatives. Uspekhi fiziologicheskikh nauk. 1998; 29 (4): 7493. (In Russ.).

23. Lyubimov G. Yu., Zenkov N. K., Volsky N. N. Chemiluminescence of peritoneal macrophages under the action of a macrophage activating factor. Immunologiya. 1992; 13 (1): 40-43. (In Russ.).

24. Amano D., Kagosaki Y., Usui T., Yamamoto S., Hayaishi O. Inhibitory effects of superoxide dismutases and various other proteins on the nitroblue tetrazolium reduction by phagocytizing guinea pig polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1975; 66 (1): 272-279. doi: 10.1016/s0006-291x(75)80324-x

25. Gerasimov I. G., Ignatov D. Yu. Functional inequivalence of human blood neutrophils: Generation of human active forms. Tsitologiya. 2001; 43 (5): 432-436. (In Russ.).

26. Lee J. S., Song I. H., Shinde P. B., Nimse S. B. Macrocycles and supramolecules as antioxidants: Excellent scaffolds for development of potential therapeutic agents. Antioxidants (Basel). 2020; 9 (9): 859. doi: 10.3390/antiox9090859


Review

For citations:


Aktanova A.A., Pashkina E.A., Boeva O.S., Feofanova N.A., Kozlov V.A. Production of reactive oxygen species by neutrophils and macrophages of F1 hybrid mice (C57Bl6xCBA) in response to stimulation with cucurbit(n)urils (n = 6, 7, 8). Acta Biomedica Scientifica. 2022;7(5-1):259-265. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-1.26

Views: 1066


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)