Preview

Acta Biomedica Scientifica

Advanced search

Experimental model of normotrophic pseudarthrosis of a rabbit’s tibia

https://doi.org/10.29413/ABS.2022-7.5-2.27

Abstract

Background. The formation of a pseudarthrosis is one of the most severe complications of bone fractures. Pseudarthrosis occurs as a result of a disorder in the fracture union, has a poor prognosis and requires long-term treatment and repeated surgeries. A small number of representative pseudarthrosis models makes it difficult to conduct preclinical studies of promising pharmacological substances, bone replacement materials and surgical methods of treatment.
The aim. To develop and to validate an experimental model of normotrophic pseudarthrosis of a rabbit’s tibia by creating diastasis between bone fragments, forming local vascularization disturbance and using unstable fixation.
Materials and methods. The study was carried out on Soviet Chinchilla rabbits. The animals were divided into 2 groups: in experimental group, we formed tibial pseudarthrosis; in control group, we made a simple transverse tibial fracture. The pseudarthrosis was formed by segmental resection (5 mm) of the middle third of the tibia, bone fragments dilatation for 5 mm, removal of periosteum and bone marrow within 5 mm followed by daily destabilization of a fracture in an external fixation device. The duration of the experiment was 6 weeks. X-ray examination of the fracture area was carried out weekly, multi-layer spiral computed tomography (MSCT) and histological examinations were carried out at the end of the experiment.
Results. The survival value in the experiment was 100 %. According to weekly X-ray examination, fracture union was registered only in the control group and occurred on average on the 22,8 ± 5,1 day, while the formation of pseudarthrosis was observed only in the experimental group, and radiographic signs of a pseudarthrosis were noted on average on the 33,6 ± 3,5 day. The formation of a pseudarthrosis by the end of the experiment was confirmed by MSCT and histological studies.
Conclusions. The developed model of the normotrophic pseudarthrosis of a rabbit’s tibia can be used for experimental tests of various factors for stimulating reparative regeneration and methods for treatment of the pseudarthrosis.

About the Authors

S. S. Smirnov
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Russian Federation

Sergey S. Smirnov – Laboratory Assistant at the Center for Preclinical and Translational Researches; 2nd year Resident Physician at the Department of Traumatology and Orthopedics

Akkuratova str. 2, Saint Petersburg 197341

Lva Tolstogo str. 6-8, Saint Petersburg 197022



E. A. Shchepkina
Pavlov First Saint Petersburg State Medical University; Vreden National Medical Center for Traumatology and Orthopedics
Russian Federation

Elena A. Shchepkina – Cand. Sc. (Med.), Docent, Associate Professor at the Department of Traumatology and Orthopedics and the Department of General Practice (Family Practice), Pavlov First Saint Petersburg State Medical University; Senior Research Officer at the Scientific Department of the Treatment of Traumas and their Consequences, Vreden National Medical Center for Traumatology and Orthopedics

Lva Tolstogo str. 6-8, Saint Petersburg 197022

Baykova str. 8, Saint Petersburg 195427



L. A. Shilenko
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Russian Federation

Leonid A. Shilenko – Laboratory Assistant at the Center for Preclinical and Translational Researches; 5th year Student

Akkuratova str. 2, Saint Petersburg 197341

Lva Tolstogo str. 6-8, Saint Petersburg 197022



E. K. Samsonenko
Pavlov First Saint Petersburg State Medical University
Russian Federation

Egor K. Samsonenko – 6th year Student

Lva Tolstogo str. 6-8, Saint Petersburg 197022



N. A. Anikin
Almazov National Medical Research Centre
Russian Federation

Nikita A. Anikin – Junior Research Officer at the Center for Preclinical and Translational Researches

Akkuratova str. 2, Saint Petersburg 197341



M. V. Mametov
Pavlov First Saint Petersburg State Medical University
Russian Federation

Malik V. Mametov – 5th year Student

Lva Tolstogo str. 6-8, Saint Petersburg 197022



Z. I. Chepurnoy
Pavlov First Saint Petersburg State Medical University
Russian Federation

Zakhar I. Chepurnoy – 5th year Student

Lva Tolstogo str. 6-8, Saint Petersburg 197022



S. E. Voronin
Almazov National Medical Research Centre
Russian Federation

Stepan E. Voronin – Veterinarian Surgeon at the Center for Preclinical and Translational Researches

Akkuratova str. 2, Saint Petersburg 197341



M. D. Gerko
Pavlov First Saint Petersburg State Medical University
Russian Federation

Marina D. Gerko – Radiologist at the Department of X-ray Computed Tomography

Lva Tolstogo str. 6-8, Saint Petersburg 197022



D. Yu. Ivkin
Saint Petersburg State Chemical Pharmaceutical University
Russian Federation

Dmitry Yu. Ivkin – Cand. Sc. (Med.), Docent, Director of the Center of Experimental Pharmacology

Professora Popova str. 14, Saint Petersburg 197376



A. A. Karpov
Almazov National Medical Research Centre; Saint Petersburg State Chemical Pharmaceutical University
Russian Federation

Andrey A. Karpov – Cand. Sc. (Med.), Docent, Head of the Scientific Laboratory, Center for Preclinical and Translational Researches

Akkuratova str. 2, Saint Petersburg 197341

Professora Popova str. 14, Saint Petersburg 197376



References

1. Kurklu M, Yurttas Y, Kose O, Demiralp B, Yuksel HY, Komurcu M. Adjunctive hyperbaric oxygen therapy in the treatment of atrophic tibial nonunion with Ilizarov external fixator: A radiographic and scintigraphic study in rabbits. Acta Orthop Traumatol Turc. 2012; 46(2): 126-131. doi: 10.3944/AOTT.2012.2586

2. Kullmann L, Wouters HW. Model-experiment in congenital pseudarthrosis of the leg. Arch Orthop Unfallchir. 1972; 73(1): 55-65. doi: 10.1007/BF00419071

3. Gyulnazarova SV, Shtin VP. Treatment of false joints. Theory and practice of the distraction method. 1992. (In Russ.).

4. Bhandari M, Tornetta P 3rd, Sprague S, Najibi S, Petrisor B, Griffith L, et al. Predictors of reoperation following operative management of fractures of the tibial shaft. J Orthop Trauma. 2003; 17(5): 353-361. doi: 10.1097/00005131-200305000-00006

5. Schemitsch EH, Bhandari M, Guyatt G, DW, Swiontkowski M, Tornetta P, et al. Prognostic factors for predicting outcomes after intramedullary nailing of the tibia. J Bone Joint Surg Am. 2012; 94(19): 1786-1793. doi: 10.2106/JBJS.J.01418

6. Mills LA, Aitken SA, Simpson A. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017; 88(4): 434-439. doi: 10.1080/17453674.2017.1321351

7. Schmidhammer R, Zandieh S, Mittermayr R, Pelinka LE, Leixnering M, Hopf R, et al. Assessment of bone union/nonunion in an experimental model using microcomputed technology. J Trauma. 2006; 61(1): 199-205. doi: 10.1097/01.ta.0000195987.57939.7e

8. Calori GM, Mazza EL, Mazzola S, Colombo A, Giardina F, Romano F, et al. Non-unions. Clin Cases Miner Bone Metab. 2017; 14(2): 186-188. doi: 10.11138/ccmbm/2017.14.1.186

9. Barabash AP, Barabash YuA. False joints. In: Mironov AP, Kotelnikov GP (eds). Orthopedics: National guidelines; 2nd ed. Moscow: GEOTAR-Media; 2013: 712-743. (In Russ.).

10. Goridova LD, Romanenko KK. Non-union of the humerus (risk factors). Orthopaedics, Traumatology and Prosthetics. 2000; (3): 72-76. (In Russ.).

11. Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram K, McNally MA, et al. Management of criticalsized bone defects in the treatment of fracture-related infection: A systematic review and pooled analysis. Arch Orthop Trauma Surg. 2021; 141(7): 1215-1230. doi: 10.1007/s00402-020-03525-0

12. Ekholm EC, Hietaniemi K, Maatta A, Vuorio E, Paavolainen P, Penttinen RP. Extended expression of cartilage components in experimental pseudoarthrosis. Connect Tissue Res. 1995; 31(3): 211-218. doi: 10.3109/03008209509010812

13. Lukin AV. Mistakes and complications in the surgical treatment of bone non-unions. Grekov’s Bulletin of Surgery. 1991; (5): 127-129. (In Russ.).

14. Hermansson L, Bodin L, Wranne L. Upper limb deficiencies in Swedish children – A comparison between a population-based and a clinic-based register. Early Hum Dev. 2001; 63(2): 131-144. doi: 10.1016/s0378-3782(01)00163-3

15. Wang JW, Weng LH. Treatment of distal femoral nonunion with internal fixation, cortical allograft struts, and autogenous bone-grafting. J Bone Joint Surg Am. 2003; 85(3): 436-440. doi: 10.2106/00004623-200303000-00006

16. Liao JC, Chen WJ, Niu CC, Chen LH. Effects of low-intensity pulsed ultrasound on spinal pseudarthrosis created by nicotine administration: A model of lumbar posterolateral pseudarthrosis in rabbits. J Ultrasound Med. 2015; 34(6): 1043-1050. doi: 10.7863/ultra.34.6.1043

17. Jager M, Wassenaar D, Busch A, Haversath M. Pseudarthroses. Orthopade. 2020; 49(6): 547-560. doi: 10.1007/s00132-020-03920-w

18. van Basten Batenburg M, Houben IB, Blokhuis TJ. The Non- Union Scoring System: An interobserver reliability study. Eur J Trauma Emerg Surg. 2019; 45(1): 13-19. doi: 10.1007/s00068-017-0796-4

19. Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Marelli N, et al. Validation of the Non-Union Scoring System in 300 long bone non-unions. Injury. 2014; 45(Suppl 6): S93-S97. doi: 10.1016/j.injury.2014.10.030

20. Sen MK, Miclau T. Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions? Injury. 2007; 38(Suppl 1): S75-S80. doi: 10.1016/j.injury.2007.02.012

21. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J Mater Sci Mater Med. 2014; 25(10): 2445-2461. doi: 10.1007/s10856-014-5240-2

22. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002; 84(5): 716-720. doi: 10.2106/00004623-200205000-00003

23. Rokn AR, Khodadoostan MA, Reza Rasouli Ghahroudi AA, Motahhary P, Kharrazi Fard MJ, Bruyn HD, et al. Bone formation with two types of grafting materials: A histologic and histomorphometric study. Open Dent J. 2011; 5: 96-104. doi: 10.2174/1874210601105010096

24. Chen J, Ashames A, Buabeid MA, Fahelelbom KM, Ijaz M, Murtaza G. Nanocomposites drug delivery systems for the healing of bone fractures. Int J Pharm. 2020; 585: 119477. doi: 10.1016/j.ijpharm.2020.119477

25. Ferreira ML, Silva PC, Pereira Lde P, Franco RS, Mello NB, Amaral AC, et al. Experimental model in rats for the development of pseudoarthrosis. Rev Col Bras Cir. 2009; 36(6): 514-518. doi: 10.1590/s0100-69912009000600010

26. Sasai H, Fujita D, Seto E, Denda Y, Imai Y, Okamoto K, et al. Outcome of limb fracture repair in rabbits: 139 cases (2007–2015). J Am Vet Med Assoc. 2018; 252(4): 457-463. doi: 10.2460/javma.252.4.457

27. Rich GA. Rabbit orthopedic surgery. Vet Clin North Am Exot Anim Pract. 2002; 5(1): 157-168,vii. doi: 10.1016/s1094-9194(03)00051-3

28. White AA 3rd, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am. 1977; 59(2): 188-192.

29. Lipinsky PV, Sirotin IV, Skoroglyadov AV, Ivkov AV, Oettinger AP, Krynetskiy EE, et al. Effects of prostaglandin E1 on callus formation in rabbits. BMC Musculoskelet Disord. 2015; 16: 247. doi: 10.1186/s12891-015-0695-y

30. Gumerman LW, Fogel SR, Goodman MA, Hanley EN Jr, Kappakas GS, Rutkowski R, et al. Experimental fracture healing: evaluation using radionuclide bone imaging: concise communication. J Nucl Med. 1978; 19(12): 1320-1323.

31. Liu X, Lyon R, Meier HT, Thometz J, Haworth ST. Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg. 2007; 25(6): 487-494. doi: 10.1089/pho.2006.2075

32. Tarasova AS, Lutsai VI, Matveeva MV. Histological evaluation of the effectiveness of intraosseous trophic blocks in experimental osteotomy of the tibia in rabbits. Legal Regulation in Veterinary Medicine. 2020: (1): 198-200. (In Russ.).

33. Akhtyamov IF, Shakirova FV, Klushkina YA, Baklanova DA, Gatina EB, Aliev EO. Experimental analysis of the healing process in the area of tibial bone fracture. Traumatology and Orthopedics of Russia. 2016; 22(1): 100-107. (In Russ.).

34. Qiao G, Tishkov NV, Goldberg OA, Lepekhova SA, Gumanenko VV, Tikhonov EV. A method for modeling a false joint in a fracture of the lower leg bones and a device for its implementation: Patent No. 2523622 of the Russian Federation. 2014; (20). (In Russ.).


Review

For citations:


Smirnov S.S., Shchepkina E.A., Shilenko L.A., Samsonenko E.K., Anikin N.A., Mametov M.V., Chepurnoy Z.I., Voronin S.E., Gerko M.D., Ivkin D.Yu., Karpov A.A. Experimental model of normotrophic pseudarthrosis of a rabbit’s tibia. Acta Biomedica Scientifica. 2022;7(5-2):268-279. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-2.27

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)