Preview

Acta Biomedica Scientifica

Advanced search

Possible use of corneal lenticule in surgery of corneal diseases (literature review)

https://doi.org/10.29413/ABS.2022-7.5-2.15

Abstract

In this review, we analyzed the domestic and foreign literature on the use of corneal lenticula obtained by keratorefractive surgery using the SMILE technology (SMall Incision Lenticula Extraction). Research is being actively carried out on the use of a lenticular tissue for refractive purposes: for the correction of hyperopia (LIKE – Lenticular Intrastromal Keratoplasty), for the correction of presbyopia (PEARL – PrEsbyopic Allogenic Refractive Lenticule). A significant amount of works are devoted to the use of lenticular tissue for the treatment of keratectasias of various origins. For example, a number of authors for the treatment of keratoconus suggest implantation of a lenticule into the recipient’s corneal pocket formed by a femtolaser (SLAK – Stromal lenticule addition keratoplasty). Clinical cases of combined treatment are described: implantation of a lenticule and corneal intrastromal segments for the treatment of corneal pellucid degeneration. A large number of works are devoted to the use of lenticules for tectonic coverage of ulcerative defects, marginal thinning in Mooren’s ulcer. Several clinical cases of the use of a corneal lenticule to cover a deep corneal defect in recurrent pterygium are described. This review also included articles on the storage and decellularization of corneal lenticules. The analyzed articles show a wide area of application of the corneal lenticule; however, more research is required in each of the areas of application, and it is also necessary to solve the problem of procurement and storage of lenticular tissue.

About the Authors

E. V. Boiko
Saint Petersburg Branch of S. Fyodorov Eye Microsurgery Federal State Institution; North-Western State Medical University named after I.I. Mechnikov; S.M. Kirov Military Medical Academy
Russian Federation

Ernest V. Boiko – Dr. Sc. (Med.), Professor, Director; Head of the Ophthalmology Department; Correspondent Member

Yaroslava Gasheka str. 21, Saint Petersburg 192283

Kirochnaya str. 41, Saint Petersburg 191015

Akademika Lebedeva str. 6, Saint Petersburg 194044



A. V. Titov
Saint Petersburg Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Aleksei V. Titov – Head of Refractive Surgery and Corneal Pathology Department, Director of the Eye Tissue Bank

Yaroslava Gasheka str. 21, Saint Petersburg 192283



J. I. Masian
Saint Petersburg Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Janek I. Masian – Ophthalmologist at the Refractive Surgery and Corneal Pathology Department

Yaroslava Gasheka str. 21, Saint Petersburg 192283



D. R. Mirsaitova
Saint Petersburg Branch of S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Dilara R. Mirsaitova – Ophthalmologist at the Refractive Surgery and Corneal Pathology Department

Yaroslava Gasheka str. 21, Saint Petersburg 192283



References

1. Mathews PM, Lindsley K, Aldave AJ, Akpek EK. Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea. 2018; 37(9): 1198-1203. doi: 10.1097/ICO.0000000000001666

2. Ing JJ, Ing HH, Nelson LR, Hodge DO, Bourne WM. Ten-year postoperative results of penetrating keratoplasty. Ophthalmology. 1998; 105(10): 1855-1865. doi: 10.1016/S0161-6420(98)91030-2

3. Ağca A, Demirok A, Yıldırım Y, Demircan A, Yaşa D, Yeşilkaya C, et al. Refractive lenticule extraction (ReLEx) through a small incision (SMILE) for correction of myopia and myopic astigmatism: Current perspectives. Clin Ophthalmol. 2016; (10): 1905-1912. doi: 10.2147/OPTH.S80412

4. Shortt AJ, Allan BD, Evans JR. Laser-assisted in-situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia. Cochrane Database Syst Rev. 2013; (1): CD005135. doi: 10.1002/14651858

5. Williams GP, Wu B, Liu YC, Teo E, Nyein CL, Peh G, et al. Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non-human primate model. PLoS One. 2018; 13(3): e0194209. doi: 10.1371/journal.pone.0194209

6. Liu LP, Wang Y, He M, Li SQ, Zeng MZ, Zhong XW. Preliminary investigation femtosecond laser-assisted refractive lenticule transplantation in rhesus monkeys. Journal Of Sun Yat-sen University (Medical Sciences). 2015; 36(3): 449-455.

7. Damgaard IB, Liu YC, Riau AK, Teo EPW, Tey ML, Nyein CL, et al. Corneal remodelling and topography following biological inlay implantation with combined crosslinking in a rabbit model. Sci Rep. 2019; 9(1): 4479. doi: 10.1038/s41598-019-39617-0

8. Barraquer JI. Modification of refraction by mean of intracorneal inclusions. Int Ophthalmol Clin. 1966; 6(1): 53-78.

9. Angunawela RI, Riau AK, Chaurasia SS, Tan DT, Mehta JS. Refractive lenticule re-implantation after myopic ReLEx: A feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012; 53(8): 4975-4985. doi: 10.1167/iovs.12-10170

10. Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS. Reversible femtosecond laser-assisted myopia correction: A non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS One. 2013; 8(6): e67058. doi: 10.1371/journal.pone.0067058

11. Liu H, Zhu W, Jiang AC, Sprecher AJ, Zhou X. Femtosecond laser lenticule transplantation in rabbit cornea: Experimental study. J Refract Surg. 2012; 28(12): 907-911. doi: 10.3928/1081597X-20121115-05

12. Liu R, Zhao J, Xu Y, Li M, Niu L, Liu H, et al. Femtosecond laser assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: A pilot study. Invest Ophthalmol Vis Sci. 2015; 56(6): 3715-3720. doi: 10.1167/iovs.14-15296

13. Zhao J, Shen Y, Tian M, Sun L, Zhao Y, Zhang X, et al. Corneal lenticule allotransplantation after femtosecond laser small incision lenticule extraction in rabbits. Cornea. 2017; 36(2): 222-228. doi: 10.1097/ICO.0000000000001076

14. Damgaard IB, Ivarsen A, Hjortdal J. Biological lenticule implantation for correction of hyperopia: An ex vivo study in human corneas. J Refract Surg. 2018; 34(4): 245-252. doi: 10.3928/1081597X-20180206-01

15. Pradhan KR, Reinstein DZ, Carp GI, Archer TJ, Gobbe M, Gurung R. Femtosecond laser-assisted keyhole endokeratophakia: Correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013; 29(11): 777-782. doi: 10.3928/1081597X-20131021-07

16. Sun L, Yao P, Li M, Shen Y, Zhao J, Zhou X. The safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg. 2015; 31(6): 374-379. doi: 10.3928/1081597X-20150521-03

17. The tool for additive hyperopia surgery – creating refractive lenticules for LIKE surgery. URL: https://www.gebauermedical.com/refractive/ [date of access: 10.06.2018].

18. Moshirfar M, Shah TJ, Masud M, Fanning T, Linn SH, Ronquillo Y, et al. A modified small-incision lenticule intrastromal keratoplasty (sLIKE) for the correction of high hyperopia: A description of a new surgical technique and comparison to lenticule intrastromal keratoplasty (LIKE). Med Hypothesis Discov Innov Ophthalmol. 2018; 7(2): 48-56.

19. Jacob S, Kumar DA, Agarwal A, Agarwal A, Aravind R, Saijimol AI. Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic Allogenic Refractive Lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017; 33(4): 224-229. doi: 10.3928/1081597X-20170111-03

20. Konstantopoulos A, Liu YC, Teo EP, Lwin NC, Yam GH, Mehta JS. Early wound healing and refractive response of different pocket configurations following presbyopic inlay implantation. PLoS One. 2017; 12(2): e0172014. doi: 10.1371/journal.pone.0172014

21. Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus – initial clinical result in 6 eyes. Cornea. 2015; 34(10): 1331-1339. doi: 10.1097/YCO.0000000000000539

22. Jin H, He M, Liu H, Zhong X, Wu J, Liu L, et al. Small-incision femtosecond laser-assisted intracorneal concave lenticule implantation in patients with keratoconus. Cornea. 2019; 38(4): 446-453. doi: 10.1097/ICO.0000000000001877

23. Mastropasqua L, Nubile M, Salgari N, Mastropasqua R. Femtosecond laser-assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: A preliminary study. J Refract Surg. 2018; 34(1): 36-44. doi: 10.3928/1081597X-20171004-04

24. Nubile M, Salgari N, Mehta JS, Calienno R, Erroi E, Bondì J, et al. Epithelial and stromal remodelling following femtosecond laser-assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus. Sci Rep. 2021; 11(1): 2293. doi: 10.1038/s41598-021-81626-5

25. Golubeva YuYu, Tereshchenko AV, Trifanenkova IG, Vishnyakova YeN, Dem’yanchenko SK. Ultraviolet crosslinking technique in the treatment of progressive keratoconus with a ”thin cornea”. Sovremennye tekhnologii v oftal’mologii. 2019; (4): 59-62. (In Russ.). doi: 10.25276/2312-4911-2019-4-59-62

26. Vasilyeva IV, Egorov VV, Vasilyev AV. Analysis of efficiency and safety of corneal collagen crosslinking in patients with cornea thickness less than 400 microns after deepitelization with application of corneal lenticule graft. Practical medicine. 2017; 9(110): 25-28. (In Russ.).

27. Ziiatdinova OF, Rascheskov AY. The intrastromal lenticule implantation for advanced keratoconus. Sovremennye tekhnologii v oftal’mologii. 2019; (5): 277-280. (In Russ.). doi: 10.25276/2312-4911-2019-5-277-280

28. Kalinnikov Y, Zinovyeva А, Nevrov D, Leontyeva G. Simultaneous implantation of refractive lenticule and intracorneal ring segment in the management of pellucid marginal degeneration. J Refract Surg. 2019; 35(9): 606-609. doi: 10.3928/1081597X-20190812-01

29. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: A global perspective. Bull World Health Organ. 2001; 79(3): 214-221.

30. Estopinal CB, Ewald MD. Geographic disparities in the etiology of bacterial and fungal keratitis in the United States of America. Semin Ophthalmol. 2016; 31(4): 345-352. doi: 10.3109 /08820538.2016.1154173

31. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016; 134(2): 167-173. doi: 10.1001/jamaophthalmol.2015.4776

32. Pant OP, Hao J, Zhou D, Pant M, Lu C. Tectonic keratoplasty using small incision lenticule extraction-extracted intras tromal lenticule for corneal lesions. J Int Med Res. 2020; 48(1): 300060519897668. doi: 10.1177/0300060519897668

33. Jiang Y, Li Y, Liu XW, Xu J. A novel tectonic keratoplasty with femtosecond laser intrastromal lenticule for corneal ulcer and perforation. Chin Med J (Engl). 2016; 129(15): 1817-1821. doi: 10.4103/0366-6999.186639

34. Abd Elaziz MS, Zaky AG, El SaebaySarhan AR. Stromal lenticule transplantation for management of corneal perforations; one year results. Graefes Arch Clin Exp Ophthalmol. 2017; 255(6): 1179-1184. doi: 10.1007/s00417-017-3645-6

35. Pant OP, Hao JL, Zhou DD, Wang F, Lu CW. A novel case using femtosecond laser-acquired lenticule for recurrent pterygium: Case report and literature review. J Int Med Res. 2018; 46(6): 2474-2480. doi: 10.1177/0300060518765303

36. He N, Song W, Gao Y. Treatment of Mooren’s ulcer coexisting with a pterygium using an intrastromal lenticule obtained from small-incision lenticule extraction: Case report and literature review. J Int Med Res. 2021; 49(6): 3000605211020246. doi: 10.1177/03000605211020246

37. Liu YC, Williams GP, George BL, Soh YQ, Seah XY, Peh GSL, et al. Corneal lenticule storage before reimplantation. Mol Vis. 2017; (23): 753-764

38. Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: “traps for new users”. PLoS One. 2015; 10(2): e0116491. doi: 10.1371/journal.pone.0116491

39. Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014; 33(12): 1355-1362. doi: 10.1097/ICO.0000000000000276

40. Huh MI, Lee KP, Kim J, Yi S, Park BU, Kim HK. Generation of femtosecond laser-cut decellularized corneal lenticule using hypotonic trypsin-EDTA solution for corneal tissue engineering. J Ophthalmol. 2018; 2018: 2590536. doi: 10.1155/2018/2590536

41. Kostenev SV, Borzenok SA, Lee VG, Nosirov PO. The use of lenticular tissue in corneal refractive surgery. Fyodorov Journal of Ophthalmic Surgery. 2021; (1): 68-72. (In Russ.). doi: 10.25276/0235-4160-2021-1-68-72

42. Borzenok SA, Kostenev SV, Doga AV, Shatskikh AV, Li VG, Ostrovskiy DS, et al. Comparative analysis of protocols for decellularization of corneal lenticular tissue. Russian Journal of Transplantology and Artificial Organs. 2021; 23(2): 137-146. (In Russ.). doi: 10.15825/1995-1191-2021-2-137-146

43. Mohamed-Noriegaarim K, Toh K-P, Poh R, Balehosur D, Riau A, Htoon HM, et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis. 2011; (17): 3437-3449.


Review

For citations:


Boiko E.V., Titov A.V., Masian J.I., Mirsaitova D.R. Possible use of corneal lenticule in surgery of corneal diseases (literature review). Acta Biomedica Scientifica. 2022;7(5-2):143-152. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-2.15

Views: 768


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)