Comorbidity of functional bowel disorders and obesity in terms of microbiome
https://doi.org/10.29413/ABS.2022-7.5-2.6
Abstract
Bacterial ecosystem of the gut plays a fundamental role in the normal functioning of the metabolic and immune systems. Functional bowel disease and obesity are highly prevalent in the population and place a heavy burden on healthcare system. Both comorbidity and multimorbidity are considered to be common for obesity and intestinal functional disorders. Changes in the microbiota can be both the cause and consequence of each disease: intestinal functional disorder changes the composition of the microbiota, resulting in obesity, and vice versa. Intestinal functional disorders and obesity are characterized by a similar type of dysbiosis.
The aim of the review is to analyze the research findings available to date in order to establish the relationship between the gut microbiome, functional bowel disease and obesity. The researches have shown that patients with intestinal functional disorders have a different gut microbiome than healthy individuals. For intestinal functional disorders, the general patterns of the intestinal microbiota composition were described, and the characteristic taxonomic groups of bacteria were identified. On the other side, it must be noted that there is no clear correlation between intestinal functional disorders and obesity in terms of the microbiota. This can be explained by the high heterogeneity of intestinal functional disorders, as well as by the lack of a unified approach to creating a study design, by different sizes of population samples and also by different diagnostic criteria. The necessity to determine the criteria in the development of the design of future studies is discussed.
About the Authors
E. S. KlimenkoRussian Federation
Elizaveta S. Klimenko – Junior Research Officer at the Laboratory of Microecology and the Microbiome
Timiryazeva str. 16, Irkutsk 664003
N. L. Belkova
Russian Federation
Natalia L. Belkova – Cand. Sc. (Biol), Docent, Leading Research Officer, Head of the Laboratory of Microecology and the Microbiome
Timiryazeva str. 16, Irkutsk 664003
A. V. Pogodina
Russian Federation
Anna V. Pogodina – Dr. Sc. (Med.), Professor, Leading Research Officer, Head of the Laboratory of Pediatrics and Cardiovascular Pathology
Timiryazeva str. 16, Irkutsk 664003
L. V. Rychkova
Russian Federation
Lyubov V. Rychkova – Dr. Sc. (Med.), Professor, Corresponding Member of RAS, Director
Timiryazeva str. 16, Irkutsk 664003
M. A. Darenskaya
Russian Federation
Marina V. Darenskaya – Dr. Sc. (Biol.), Leading Research Officer, Head of the Laboratory of Pathophysiology
Timiryazeva str. 16, Irkutsk 664003
References
1. Karpeeva YuS, Novikova VP, Khavkin AI, Kovtun TA, Makarkin DV, Fedotova OB. Microbiota and human diseases: Dietary correction. Russian Bulletin of Perinatology and Pediatrics. 2020; 65(5): 116-125. (In Russ.). doi: 10.21508/1027-4065-2020-65-5-116-125
2. Bobunov DN, Iordanishvili AK, Mikhailov VD, Shapurko ON. Role of normal intestinal microflora (microbiotas) in rehabilitation of patients with obesity. Experimental and Clinical Gastroenterology. 2019; (5): 105-110. (In Russ.). doi: 10.31146/1682-8658-ecg-165-5-105-110
3. Pogodina AV, Romanitsa AI, Rychkova LV. Obesity and functional bowel disorders: are they linked? Obesity and Metabolism. 2021; 18(2): 132-141. (In Russ.). doi: 10.14341/omet12706
4. Klimenko ES, Belkova NL, Romanitsa AI, Pogodina AV, Rychkova LV. Diversity and metabolic potential of the gut microbiome of adolescents with functional bowel disorder. Bulletin of Experimental Biology and Medicine. 2021: 172(12): 675-680. (In Russ.). doi: 10.47056/0365-9615-2021-172-12-675-680
5. Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation global study. Gastroenterology. 2021; 160(1): 99-114.e3. doi: 10.1053/j.gastro.2020.04.014
6. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health. 2018; 15(8): 1679. doi: 10.3390/ijerph15081679
7. Simanenkov VI, Tikhonov SV, Dekkanova VD. Irritable bowel syndrome in a patient with obesity: Accident or regularity? Medical Alphabet. 2019; 2(13): 14-19. (In Russ.). doi: 10.33667/2078-5631-2019-2-13(388)-14-19
8. Kolosov YuA, Kolesnikov SI, Anishchenko AP, Burdyukova EV, Gurevich KG. Overweight and obesity in children, adolescents and adults. Pathogenesis. 2016; 14(4): 9-14. (In Russ.).
9. Kolesnikova LI, Darenskaya MA, Rychkova LV, Grebenkina LA, Semenova NV, Kolesnikov SI. Lipids methabolism and antioxidant status in exogenous constitutional obesity in girls of Buryatia. Russian Bulletin of Perinatology and Pediatrics. 2021; 66(1): 80-86. (In Russ.). doi: 10.21508/1027-4065-2021-66-1-80-86
10. Darenskaya MA, Rychkova LV, Kolesnikov SI, Semenova NV, Nikitina OA, Brichagina AS, et al. Biochemical status of different ethnicity male adolescents with obesity: discriminant analysis in the most informative indicators determination. Bulletin of Experimental Biology and Medicine. 2022; 173(4): 468-473. (In Russ.). doi: 10.47056/0365-9615-2022-173-4-468-473
11. Black CJ, Ford AC. Assessing the impact of changes to the Rome IV criteria for clinical practice in irritable bowel syndrome. Gastroenterology. 2022; 162(6): 1752-1754.e1. doi: 10.1053/j.gastro.2022.01.021
12. Plotnikova EYu. Unique strain of Bifidobacterium longum and its efficacy in irritable bowel syndrome. Medical Council. 2020; (21): 144-150. (In Russ.). doi: 10.21518/2079-701X-2020-21-144-150
13. Bennet SMP, Böhn L, Störsrud S, Liljebo T, Collin L, Lindfors P, et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut. 2018; 67(5): 872-881. doi: 10.1136/gutjnl-2016-313128
14. Jeffery IB, Quigley EM, Öhman L, Simrén M, O’Toole PW. The microbiota link to irritable bowel syndrome: An emerging story. Gut Microbes. 2012; 3(6): 572-576. doi: 10.4161/gmic.21772
15. Ivashkin KV, Grechishnikova VR, Reshetova MS, Ivashkin VT. Irritable bowel and bacterial overgrowth syndromes: A bacterial link hypothesis of functional disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2021; 31(1): 54-63. (In Russ.). doi: 10.22416/1382-4376-2021-31-1-54-63
16. Yuan F, Ni H, Asche CV, Kim M, Walayat S, Ren J. Efficacy of Bifidobacterium infantis 35624 in patients with irritable bowel syndrome: A meta-analysis. Curr Med Res Opin. 2017; 33(7): 1191-1197. doi: 10.1080/03007995.2017.1292230
17. Sehgal K, Khanna S. Gut microbiota: A target for intervention in obesity. Expert Rev Gastroenterol Hepatol. 2021; 15(10): 1169-1179. doi: 10.1080/17474124.2021.1963232
18. Samoilova JG, Oleynik OA, Sagan EV, Vorozhtsova IN, Filippova TA, Denisov NS, et al. Composition and metabolic activity of the gut microbiota in obese children and adolescents. The Siberian Journal of Clinical and Experimental Medicine. 2020; 35(3): 38-46. (In Russ.). doi: 10.29001/2073-8552-2020-35-3-38-46
19. Oleinik OA, Samoilova YuG, Sagan EV, Podchinenova DV, Dirayeva NM. Features of the composition of the microbiota of the biotope of the small intestine and the secretion of incretins in obesity in children. Russian Pediatric Journal. 2021; 24(4): 269-269. (In Russ.).
20. Novikova EA, Bairova TA. Obesity: Ethnic and regional differences in the diet and gut microbiota (review). Acta biomedica scientifica. 2019; 4(1): 19-25. (In Russ.). doi: 10.29413/ABS.2019-4.1.3
21. Churkina AI, Freilikhman OA, Maksimova KV, Kondratenko YuD, Fedorova OV, Kalinina OV, et al. Analysis of the gut microbiome profile of obese patients. Gastroenterologiya Sankt-Peterburga. 2020; 1-2: 93. (In Russ.).
22. Volkova NI, Naboka YL, Ganenko LA, Оksenuk OS. A feature of the microbiota of the colon in patients with different phenotypes of obesity (pilot study). Medical Herald of the South of Russia. 2020; 11(2): 38-45. (In Russ.). doi: 10.21886/2219-8075-2020-11-2-38-45
23. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 2020; 113(12): 2019-2040. doi: 10.1007/s10482-020-01474-7
24. Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne). 2022; 13: 994930. doi: 10.3389/fendo.2022.994930
25. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018; 9(4): 308-325. doi: 10.1080/19490976.2018.1465157
26. Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC, et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio. 2021; 12(3): e00478-21. doi: 10.1128/mBio.00478-21
27. Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012; 20(11): 2257-2261. doi: 10.1038/oby.2012.110
28. Depommier C, Everard A, Druart C, Maiter D, Thissen JP, Loumaye A, et al. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes. 2021; 13(1): 1994270. doi: 10.1080/19490976.2021.1994270
29. Edwards PT, Kashyap PC, Preidis GA. Microbiota on biotics: probiotics, prebiotics, and synbiotics to optimize growth and metabolism. Am J Physiol Gastrointest Liver Physiol. 2020; 319(3): G382-G390. doi: 10.1152/ajpgi.00028.2020
30. Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MLÁ, Palacios-González B, Menjivar M. Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. Front Microbiol. 2018; 9: 2494. doi: 10.3389/fmicb.2018.02494
31. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology. 2013; 57(2): 601-609. doi: 10.1002/hep.26093
32. Quiroga R, Nistal E, Estébanez B, Porras D, Juárez-Fernández M, Martínez-Flórez S, et al. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp Mol Med. 2020; 52(7): 1048-1061. doi: 10.1038/s12276-020-0459-0
33. Bai J, Hu Y, Bruner DW. Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American Gut Project. Pediatr Obes. 2019; 14(4): e12480. doi: 10.1111/ijpo.12480
34. Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017; 65(2): 451-464. doi: 10.1002/hep.28572
35. Bozzi Cionci N, Baffoni L, Gaggìa F, Di Gioia D. Therapeutic microbiology: The role of Bifidobacterium breve as food supplement for the prevention/treatment of paediatric diseases. Nutrients. 2018; 10(11): 1723. doi: 10.3390/nu10111723
36. Nagpal R, Kurakawa T, Tsuji H, Takahashi T, Kawashima K, Nagata S, et al. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: A quantitative assessment. Sci Rep. 2017; 7(1): 10097. doi: 10.1038/s41598-017-10711-5
37. Da Silva CC, Monteil MA, Davis EM. Overweight and obesity in children are associated with an abundance of firmicutes and reduction of Bifidobacterium in their gastrointestinal microbiota. Child Obes. 2020; 16(3): 204-210. doi: 10.1089/chi.2019.0280
38. Hou YP, He QQ, Ouyang HM, Peng HS, Wang Q, Li J, et al. Human gut microbiota associated with obesity in chinese children and adolescents. Biomed Res Int. 2017; 2017: 7585989. doi: 10.1155/2017/7585989
39. Aasbrenn M, Valeur J, Farup PG. Evaluation of a faecal dysbiosis test for irritable bowel syndrome in subjects with and without obesity. Scand J Clin Lab Invest. 2018; 78(1-2): 109-113. doi: 10.1080/00365513.2017.1419372
40. Romanitsa AI, Nemchenko UM, Pogodina AV, Grigorova EV, Belkova NL, Voropayeva NM, et al. Associations of clinical features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study. Acta biomedica scientifica. 2021; 6(6-2): 73-81. (In Russ.). doi: 10.29413/ABS.2021-6.6-2.8
41. Nemchenko UM, Grigorova EV, Pogodina AV, Belkova NL, Voropaeva NM, Romanitsa AI, et al. The relationship between the composition of the microbiota and functional intestinal disorders in obese adolescents. Russian Clinical Laboratory Diagnostics. 2022; 67(2): 106-109. (In Russ.). doi: 10.51620/0869-2084-2022-67-2-106-109
42. Kumbhare SV, Francis-Lyon PA, Kachru D, Uday T, Irudayanathan C, Muthukumar KM, et al. Digital therapeutics care utilizing genetic and gut microbiome signals for the management of functional gastrointestinal disorders: Results from a preliminary retrospective study. Front Microbiol. 2022; 13: 826916. doi: 10.3389/fmicb.2022.826916
43. Casén C, Vebø HC, Sekelja M, Hegge FT, Karlsson MK, Ciemniejewska E, et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment Pharmacol Ther. 2015; 42(1): 71-83. doi: 10.1111/apt.13236
44. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016; 352(6285): 560-564. doi: 10.1126/science.aad3503
45. Takeshita K, Mizuno S, Mikami Y, Sujino T, Saigusa K, Matsuoka K, et al. A single species of Clostridium subcluster XIVa decreased in ulcerative colitis patients. Inflamm Bowel Dis. 2016; 22(12): 2802-2810. doi: 10.1097/MIB.0000000000000972
46. Jin M, Kalainy S, Baskota N, Chiang D, Deehan EC, McDougall C, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int. 2019; 39(8): 1437-1447. doi: 10.1111/liv.14106
47. Bui TPN, Troise AD, Nijsse B, Roviello GN, Fogliano V, de Vos WM. Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. J Funct Foods. 2020; 70: 103974. doi: 10.1016/j.jff.2020.103974
48. Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 2021; 12(1): 4077. doi: 10.1038/s41467-021-24331-1
49. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014; 121: 91-119. doi: 10.1016/B978-0-12-800100-4.00003-9
50. McFarland LV, Goh S. Are probiotics and prebiotics effective in the prevention of travellers’ diarrhea: A systematic review and meta-analysis. Travel Med Infect Dis. 2019; 27: 11-19. doi: 10.1016/j.tmaid.2018.09.007
51. Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC. Probiotic Lactobacillus casei: Effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers. Nutrients. 2019; 11(5): 1150. doi: 10.3390/nu11051150
52. Yang B, Yue Y, Chen Y, Ding M, Li B, Wang L, et al. Lactobacillus plantarum CCFM1143 alleviates chronic diarrhea via inflammation regulation and gut microbiota modulation: A double-blind, randomized, placebo-controlled study. Front Immunol. 2021; 12: 746585. doi: 10.3389/fimmu.2021.746585
53. Singh SB, Lin HC. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms. 2015; 3(4): 866-889. doi: 10.3390/microorganisms3040866
54. Kushkevych I, Dordević D, Kollar P, Vítězová M, Drago L. Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. J Clin Med. 2019; 8(7): 1054. doi: 10.3390/jcm8071054
55. Cruz-Aguliar RM, Wantia N, Clavel T, Vehreschild MJGT, Buch T, Bajbouj M, et al. An open-labeled study on fecal microbiota transfer in irritable bowel syndrome patients reveals improvement in abdominal pain associated with the relative abundance of Akkermansia muciniphila. Digestion. 2019; 100(2): 127-138. doi: 10.1159/000494252
56. Dahiya DK, Renuka A, Puniya M, Shandilya UK, Dhewa T, Kumar N, et al. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review. Front Microbiol. 2017; 8: 563. doi: 10.3389/fmicb.2017.00563
57. Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, et al. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol. 2009; 15(47): 5936-5945. doi: 10.3748/wjg.15.5936
58. Lee SH, You HS, Kang HG, Kang SS, Hyun SH. Association between altered blood parameters and gut microbiota after synbiotic intake in healthy, elderly Korean women. Nutrients. 2020; 12(10): 3112. doi: 10.3390/nu12103112
59. Rigsbee L, Agans R, Shankar V, Kenche H, Khamis HJ, Michail S, et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2012; 107(11): 1740-51. doi: 10.1038/ajg.2012.287
60. Belkova NL, Nemchenko UM, Pogodina AV, Feranchuk SI, Romanitsa AI, Novikova EA, et al. Composition and structure of gut microbiome in adolescents with obesity and different breastfeeding duration. Bull Exp Biol Med. 2019; 167(6): 759-762. doi: 10.1007/s10517-019-04617-7
Review
For citations:
Klimenko E.S., Belkova N.L., Pogodina A.V., Rychkova L.V., Darenskaya M.A. Comorbidity of functional bowel disorders and obesity in terms of microbiome. Acta Biomedica Scientifica. 2022;7(5-2):56-66. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-2.6