Preview

Acta Biomedica Scientifica

Advanced search

Metabolic features of naïve and memory CD4+T cells in quiescence and during proliferation

https://doi.org/10.29413/ABS.2022-7.5-1.18

Abstract

   Background. Memory CD4+ T cells proliferation is the basis for accelerated secondary immune response. The characteristics of memory CD4+ T cells providing their faster division compared to naive CD4+ T lymphocytes are poorly understood. T cells proliferative ability is determined by their metabolism. The metabolic features of proliferating memory CD4+ T cells remain elusive.
   The aim. To compare the metabolic features of naive and memory CD4+ T cells in quiescence and during proliferation.
   Methods. Peripheral blood mononuclear cells were analyzed using flow cytometry. Dividing cells were identified by CD71 expression. Cellular glucose and fatty acid uptake was assessed using fluorescent glucose (2-NBDG) and palmitate (BODIPY-FL-C16) analogs, respectively. Glutamine transporter expression was analyzed by staining the cells with anti-ASCT2 antibodies. Mitochondrial mass and membrane potential were measured using MitoTracker Green and MitoTracker Orange, respectively.
   Results. Quiescent memory CD4+ T cells exhibited elevated levels of glucose and palmitate uptake when compared to naive CD4 + T lymphocytes (p < 0.001). Both subsets had increased substrate consumption when proceeding to proliferation (p < 0.001). When dividing, naive CD4+ T cells consumed more glucose and palmitate than memory CD4+ T cell (p < 0.001). Proliferation caused an increase in mitochondrial mass in naive (p < 0.001) and memory CD4+ T lymphocytes (p < 0.05). In memory CD4+ T cells, unlike naive CD4+ T lymphocytes, an increase in mitochondrial mass wasn’t accompanied by an increase in membrane potential.
   Conclusion. In memory CD4 + T cells, compared to naive CD4+ T lymphocytes, the metabolic change induced by proliferation is moderate and affects the mitochondrial activity to a lesser extent. Lower bioenergetic expenses of memory CD4+ T cells can contribute to their rapid proliferation during secondary immune response.

About the Authors

V. V. Vlasova
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Violetta V. Vlasova – Junior Research Officer at the Laboratory of Molecular Immunology

Goleva str. 13, Perm 614081



E. V. Saidakova
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences; Perm State University
Russian Federation

Evgeniya V. Saidakova – Dr. Sc. (Biol.), Head of the Laboratory of Molecular Immunology, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences; Associate Professor at the Department of Microbiology and Immunology, Perm State University

Goleva str. 13, Perm 614081
Bukireva str. 15, Perm 614068



L. B. Korolevskaya
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Larisa B. Korolevskaya – Cand. Sc. (Med.), Research Officer at the Laboratory of Ecological Immunology

Goleva str. 13, Perm 614081



N. G. Shmagel
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Nadezhda G. Shmagel – Dr. Sc. (Med.), Senior Research Officer at the Laboratory of Ecological Immunology

Goleva str. 13, Perm 614081



K. V. Shmagel
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Konstantin V. Shmagel – Dr. Sc. (Med.), Head of the Laboratory of Ecological Immunology

Goleva str. 13, Perm 614081



References

1. Burnet F. M. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin. 1976; 26 (2): 119-121. doi: 10.3322/canjclin.26.2.119

2. Heinzel S., Marchingo J. M., Horton M. B., Hodgkin P. D. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol. 2018; 51: 32-38. doi: 10.1016/j.coi.2018.01.002

3. Rogers P. R., Dubey C., Swain S. L. Qualitative changes accompany memory T cell generation: Faster, more effective responses at lower doses of antigen. J Immunol. 2000; 164 (5): 2338-2346. doi: 10.4049/jimmunol.164.5.2338

4. Abdel-Haleem A. M., Lewis N. E., Jamshidi N., Mineta K., Gao X., Gojobori T. The emerging facets of non-cancerous Warburg effect. Front Endocrinol (Lausanne). 2017; 8: 279. doi: 10.3389/fendo.2017.00279

5. DeBerardinis R. J., Lum J. J., Hatzivassiliou G., Thompson C. B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7 (1): 11-20. doi: 10.1016/j.cmet.2007.10.002

6. Shah A. M., Wang Z., Ma J. Glutamine metabolism and its role in immunity, a comprehensive review. Animals (Basel). 2020; 10 (2): 326. doi: 10.3390/ani10020326

7. Yao C. H., Fowle-Grider R., Mahieu N. G., Liu G. Y., Chen Y. J., Wang R., et al. Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem Biol. 2016; 23 (4): 483-493. doi: 10.1016/j.chembiol.2016.03.007

8. Frezza C., Gottlieb E. Mitochondria in cancer: Not just innocent bystanders. Semin Cancer Biol. 2009; 19 (1): 4-11. doi: 10.1016/j.semcancer.2008.11.008

9. Spinelli J. B., Haigis M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018; 20 (7): 745-754. doi: 10.1038/s41556-018-0124-1

10. Spurlock B., Tullet J., Hartman J. L., Mitra K. Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Exp Gerontol. 2020; 135: 110919. doi: 10.1016/j.exger.2020.110919

11. Xiong W., Jiao Y., Huang W., Ma M., Yu M., Cui Q., et al. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2012; 44 (4): 347-358. doi: 10.1093/abbs/gms006

12. Cantor J., Haskins K. Recruitment and activation of macrophages by pathogenic CD4 T cells in type 1 diabetes: Evidence for involvement of CCR8 and CCL1. J Immunol. 2007; 179 (9): 5760-5767. doi: 10.4049/jimmunol.179.9.5760

13. Borst J., Ahrends T., Bąbała N., Melief C. J. M., Kastenmüller W. CD4<sup>+</sup> T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018; 18 (10): 635-647. doi: 10.1038/s41577-018-0044-0

14. MacLeod M. K. L., David A., McKee A. S., Crawford F., Kappler J. W., Marrack P. Memory CD4 T cells that express CXCR5 provide accelerated help to B cells. J Immunol. 2011; 186 (5): 2889-2896. doi: 10.4049/jimmunol.1002955

15. Zhu J., Paul W. E. CD4 T cells: Fates, functions, and faults. Blood. 2008; 112 (5): 1557-1569. doi: 10.1182/blood-2008-05-078154

16. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155 (3): 1151-1164.

17. Buck M. D., O’Sullivan D., Pearce E. L. T cell metabolism drives immunity. J Exp Med. 2015; 212 (9): 1345-1360. doi: 10.1084/jem.20151159

18. Beier U. H., Angelin A., Akimova T., Wang L., Liu Y., Xiao H., et al. Essential role of mitochondrial energy metabolism in Foxp3<sup>+</sup> T-regulatory cell function and allograft survival. FASEB J. 2015; 29 (6): 2315-2326. doi: 10.1096/fj.14-268409

19. Ricciardi S., Manfrini N., Alfieri R., Calamita P., Crosti M. C., Gallo S., et al. The translational machinery of human CD4<sup>+</sup> T Cells is poised for activation and controls the switch from quiescence to metabolic remodeling. Cell Metab. 2018; 28 (6): 895-906.e5. doi: 10.1016/j.cmet.2018.08.009

20. Ron-Harel N., Santos D., Ghergurovich J. M., Sage P. T., Reddy A., Lovitch S. B., et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016; 24 (1): 104-117. doi: 10.1016/j.cmet.2016.06.007

21. Jones N., Vincent E. E., Cronin J. G., Panetti S., Chambers M., Holm S. R., et al. Akt and STAT5 mediate naïve human CD4<sup>+</sup> T-cell early metabolic response to TCR stimulation. Nat Commun. 2019; 10 (1): 2042. doi: 10.1038/s41467-019-10023-4

22. Clerc I., Moussa D. A., Vahlas Z., Tardito S., Oburoglu L., Hope T. J., et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat Metab. 2019; 1 (7): 717-730. doi: 10.1038/s42255-019-0084-1

23. Younes S. A., Talla A., Pereira Ribeiro S., Saidakova E. V., Korolevskaya L. B., Shmagel K. V., et al. Cycling CD4<sup>+</sup> T cells in HIV-infected immune nonresponders have mitochondrial dysfunction. J Clin Invest. 2018; 128 (11): 5083-5094. doi: 10.1172/JCI120245

24. Michalek R. D., Gerriets V. A., Jacobs S. R., Macintyre A. N., MacIver N. J., Mason E. F., et al. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4<sup>+</sup> T cell subsets. J Immunol. 2011; 186 (6): 3299-3303. doi: 10.4049/jimmunol.1003613

25. Pacella I., Procaccini C., Focaccetti C., Miacci S., Timperi E., Faicchia D., et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A. 2018; 115 (28): E6546-E6555. doi: 10.1073/pnas.1720113115

26. Mitra K., Wunder C., Roysam B., Lin G., Lippincott-Schwartz J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci. 2009; 106 (29): 11960-11965. doi: 10.1073/pnas.0904875106

27. van der Windt G. J. W., O’Sullivan D., Everts B., Huang S. C. C., Buck M. D., Curtis J. D., et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A. 2013; 110 (35): 14336-14341. doi: 10.1073/pnas.1221740110

28. Chetina E. V., Demidova N. V., Markova G. A. Metabolic aspects of clinical remission prediction from baseline blood gene expression in patients with rheumatoid arthritis treated with methotrexate. Modern Rheumatology Journal. 2019; 13 (2): 47-54. (In Russ.). doi: 10.14412/1996-7012-2019-2-47-54

29. Shirinsky I. V., Shirinsky V. S. Pleiotropic effects of PPAR-α – From benchside to bedside. Medical Immunology (Russia). 2021; 23 (3): 439-454. (In Russ.). doi: 10.15789/1563-0625-PEO-2222

30. Shvetz O. A., Deripapa E. V., Abramova I. N., Victorova E. A., Rodina Yu. A., Deordieva E. A., et al. Sirolimus efficacy in treatment of autoimmune lymphoproliferative syndrome. Pediatric Hematology / Oncology and Immunopathology. 2018; 17 (1): 46-53. (In Russ.). URL: https://www.hemoncim.com/jour/article/view/26


Review

For citations:


Vlasova V.V., Saidakova E.V., Korolevskaya L.B., Shmagel N.G., Shmagel K.V. Metabolic features of naïve and memory CD4+T cells in quiescence and during proliferation. Acta Biomedica Scientifica. 2022;7(5-1):167-178. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-1.18

Views: 793


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)