Preview

Acta Biomedica Scientifica

Advanced search

Mechanisms of autoimmune pathology in post-COVID syndrome

https://doi.org/10.29413/ABS.2022-7.5-1.8

Abstract

   One of the delayed consequences of SARS-CoV-2 infection is post-acute COVID-19 – polymorphic disorders of various organ systems that affect COVID-19 convalescents and persist for more than four weeks after an acute infection. Due to the infectious nature of the COVID-19, we would like to pay special attention to complications from the immune system, especially concomitant and new-onset autoimmune pathology. This review analyzes the current state of the issue of post-acute COVID-19 complications, discusses the molecular features of the SARS-CoV-2 virus and the mechanisms underlying the impaired immune response during acute COVID-19 infection and the occurrence of autoimmune and autoinflammatory conditions during convalescence. Particular attention is paid to the molecular mimicry of antigenic determinants of the SARS-CoV-2 virus, which are structurally similar to the epitopes of human autoantigens. The current data on post-acute COVID-19 autoimmune complications from humoral immunity and the endocrine system, as well as reproductive disorders faced by male patients are presented. For the first time, we hypothesize a role of the structural homology of the human SOX13 autoantigen (HMG box factor SOX13) associated with diabetes mellitus and SARS-CoV-2 envelope (E) protein in the development of the post-acute COVID-19 autoimmune pathologies. Due to the structural similarity of the two proteins and the overlap of their immunogenic regions, we suggest that the increased risk of developing diabetes mellitus and reproductive disorders in men after suffering from COVID-19 may be associated with immunological cross-reactivity.

About the Authors

E. A. Orlova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Elizaveta A. Orlova – Postgraduate, Junior Research Officer at the Laboratory of Epidemically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003



I. G. Kondratov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Ilya G. Kondratov – Cand. Sc. (Biol.), Research Officer at the Laboratory of Epidemically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003



O. B. Ogarkov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Oleg B. Ogarkov – Dr. Sc. (Med.), Head of the Department of Epidemiology and Microbiology

Timiryazeva str. 16, Irkutsk 664003



L. I. Kolesnikova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Lyubov I. Kolesnikova – Dr. Sc. (Med.), Professor, Academician of RAS, Academic Director

Timiryazeva str. 16, Irkutsk 664003



References

1. Montani D., Savale L., Noel N., Meyrignac O., Colle R., Gasnier M., et al. Post-acute COVID-19 syndrom. Eur Respir Rev. 2022; 31 (163): 210185. doi: 10.1183/16000617.0185-2021

2. Halpin S., O’Connor R., Sivan M. Long COVID and chronic COVID syndromes. J Med Virol. 2021; 93(3): 1242-1243. doi: 10.1002/JMV.26587

3. Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021; 397 (10270): 220-232. doi: 10.1016/S0140-6736(20)32656-8

4. Healey Q., Sheikh A., Daines L., Vasileiou E. Symptoms and signs of long COVID: A rapid review and meta-analysis. J Glob Health. 2022; 12: 05014. doi: 10.7189/jogh.12.05014

5. Galeeva J., Babenko V., Bakhtyev R., Baklaushev V., Balykova L., Bashkirov P., et al. 16S rRNA gene sequencing data of the upper respiratory tract microbiome in the SARS-CoV-2 infected patients. Data Brief. 2022; 40: 107770. doi: 10.1016/j.dib.2021.107770

6. Ahmed H., Patel K., Greenwood D. C., Halpin S., Lewthwaite P., Salawu A., et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med. 2020; 52 (5): jrm00063. doi: 10.2340/16501977-2694

7. Jaimes J. A., Millet J. K., Whittaker G. R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience. 2020; 23 (6): 101212. doi: 10.1016/j.isci.2020.101212

8. Cai Y., Zhang J., Xiao T., Peng H., Sterling S. M., Walsh R. M. Jr., et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020; 369 (6511): 1586-1592. doi: 10.1126/science.abd4251

9. Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020; 587 (7835): 657-662. doi: 10.1038/s41586-020-2601-5

10. Konno Y., Kimura I., Uriu K., Fukushi M., Irie T., Koyanagi Y., et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep. 2020; 32 (12): 108185. doi: 10.1016/j.celrep.2020.108185

11. Viswanathan T., Arya S., Chan S. H., Qi S., Dai N., Misra A., et al. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 2020; 11 (1): 3718. doi: 10.1038/s41467-020-17496-8

12. Kumar A., Prasoon P., Kumari C., Pareek V., Faiq M. A., Narayan R. K., et al. SARS-CoV-2-specific virulence factors in COVID-19. J Med Virol. 2021; 93 (3): 1343-1350. doi: 10.1002/jmv.26615 J Med Virol. 2021; 93(3): 1343-1350. doi: 10.1002/jmv.26615

13. Orlova E. A., Ogarkov O. B., Zhdanova S. N., Khromova P. A., Sinkov V. V., Khasnatinov M. A., et al. Viral load in COVID-19: Underestimated clinical and epidemiological marker. Acta biomedica scientifica. 2021; 6 (1): 33-39. (In Russ.). doi: 10.29413/ABS.2021-6.1.5

14. Chippa V., Aleem A., Anjum F. Post acute coronavirus (COVID-19) syndrome. StatPearls. StatPearls Publishing, Treasure Island (FL); 2022.

15. Liu A., Wang W., Zhao X., Zhou X., Yang D., Lu M., et al. Disappearance of antibodies to SARS-CoV-2 in a -COVID-19 patient after recovery. Clin Microbiol Infect. 2020; 26 (12): 1703-1705. doi: 10.1016/j.cmi.2020.07.009

16. Novikova E. A., Petrova A. G., Moskaleva E. V., Vanyarkinа A. S., Rychkova L. V. Retrospective of international serological studies on the formation and dynamics of the humoral immune response to SARS-CoV-2: From 2020 to 2021. Acta biomedica scientifica. 2021; 6 (2): 47-57. (In Russ.). doi: 10.29413/ABS.2021-6.2.5

17. Xu X., Chang X. N., Pan H. X., Su H., Huang B., Yang M., et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019 (COVID-19) by postmortem needle autopsy. Zhonghua Bing Li Xue Za Zhi. 2020; 49 (6): 576-582. URL: https://pubmed.ncbi.nlm.nih.gov/32340089/

18. Kaneko N., Kuo H. H., Boucau J., Farmer J. R., Allard-Chamard H., Mahajan V. S., et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. 2020; 183 (1): 143-157.e13. doi: 10.1016/j.cell.2020.08.025

19. Zhang X., Tan Y., Ling Y., Lu G., Liu F., Yi Z., et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020; 583 (7816): 437-440. doi: 10.1038/s41586-020-2355-0

20. Klann K., Bojkova D., Tascher G., Ciesek S., Münch C., Cinatl J. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol Cell. 2020; 80 (1): 164-174.e4. doi: 10.1016/j.molcel.2020.08.006

21. Bouhaddou M., Memon D., Meyer B., White K. M., Rezel J. V. V., Correa Marrero M., et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell. 2020; 182 (3): 685-712.e19. doi: 10.1016/j.cell.2020.06.034

22. Tomer Y., Davies T. F. Infection, thyroid disease, and autoimmunity. Endocr Rev. 1993; 14 (1): 107-120. doi: 10.1210/edrv-14-1-107

23. Desailloud R., Hober D. Viruses and thyroiditis: An update. Virol J. 2009; 6: 5. doi: 10.1186/1743-422X-6-5

24. Gelfand J. M. Autoimmune encephalitis after herpes simplex encephalitis: insights into pathogenesis. Lancet Neurol. 2018; 17 (9): 733-735. doi: 10.1016/S1474-4422(18)30279-5

25. Whiteside S. K., Snook J. P., Williams M. A., Weis J. J. Bystander T. Cells: A balancing act of friends and foes. Trends Immunol. 2018; 39 (12): 1021-1035. doi: 10.1016/j.it.2018.10.003

26. Lee H. G., Cho M. Z., Choi J. M. Bystander CD4+ T cells: Crossroads between innate and adaptive immunity. Exp Mol Med. 2020; 52 (8): 1255-1263. doi: 10.1038/s12276-020-00486-7

27. Shim C. H., Cho S., Shin Y. M., Choi J. M. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep. 2022; 55 (2): 57-64. doi: 10.5483/BMBRep.2022.55.2.183

28. Kotlarz A., Tuka J. S., Krzewski K., Brycka E., Lipinska B. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress Chaperones. 2013; 18 (5): 653-659. doi: 10.1007/s12192-013-0407-1

29. Kayser M. S., Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016; 176 (1): 36-40. doi: 10.1016/j.schres.2014.10.007

30. An H., Eun M., Yi J., Park J. CRESSP: A comprehensive pipeline for prediction of immunopathogenic SARS-CoV-2 epitopes using structural properties of proteins. Brief Bioinform. 2022; 23 (2): bbac056. doi: 10.1093/bib/bbac056

31. Chang S. E., Feng A., Meng W., Apostolidis S. A., Mack E., Artandi M., et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021; 12 (1): 5417. doi: 10.1038/s41467-021-25509-3

32. Zhou Y., Han T., Chen J., Hou C., Hua L., He S., et al. Clinical and autoimmune characteristics of severe and critical cases of COVID‐19. Clin Transl Sci. 2020; 13 (6): 1077-1086. doi: 10.1111/cts.12805

33. Reichlin M. Autoantibodies to the RoRNP particles. Clin Exp Immunol. 1995; 99 (1): 7-9. doi: 10.1111/j.1365-2249.1995.tb03464.x

34. Irure-Ventura J., López-Hoyos M. The past, present, and future in antinuclear antibodies (ANA). Diagnostics (Basel). 2022; 12 (3): 647. doi: 10.3390/diagnostics12030647

35. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020; 382 (17): e38. doi: 10.1056/NEJMc2007575

36. Taha M., Samavati L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open. 2021; 7 (2): e001580. doi: 10.1136/rmdopen-2021-001580

37. Li W., Huang H., Cai M., Yuan T., Sheng Y. Antineutrophil cytoplasmic antibody-associated vasculitis update: Genetic pathogenesis. Front Immunol. 2021; 12: 624848. doi: 10.3389/fimmu.2021.624848

38. Quinton J. F., Sendid B., Reumaux D., Duthilleul P., Cortot A., Grandbastien B., et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: Prevalence and diagnostic role. Gut. 1998; 42 (6): 788-791. doi: 10.1136/gut.42.6.788

39. Bonometti R., Sacchi M. C., Stobbione P., Lauritano E. C., Tamiazzo S., Marchegiani A., et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur Rev Med Pharmacol Sci. 2020; 24 (18): 9695-9697. doi: 10.26355/eurrev_202009_23060

40. Jenks S. A., Cashman K. S., Zumaquero E., Marigorta U. M., Patel A. V., Wang X., et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2020; 52 (1): 203. doi: 10.1016/j.immuni.2019.12.005

41. Al-Kuraishy H. M., Al-Gareeb A. I., Al-Hussaniy H. A., Al-Harcan N. A. H., Alexiou A., Batiha G. E. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol. 2022; 104: 108516. doi: 10.1016/j.intimp.2021.108516

42. Zuo Y., Yalavarthi S., Navaz S. A., Hoy C. K., Harbaugh A., Gockman K., et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021; 6 (15): e150111. doi: 10.1172/jci.insight.150111

43. Moskaleva E. V., Petrova A. G., Rychkova L. V., Novikova E. A., Vanyarkinа A. S. Indicators of the immune status in children after a new coronavirus infection. Acta biomedica scientifica. 2021; 6 (2): 58-62. (In Russ.). doi: 10.29413/ABS.2021-6.2.6

44. Zuo Y., Yalavarthi S., Shi H, Gockman K., Zuo M., Madison J. A., et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5 (11): e138999. doi: 10.1172/jci.insight.138999

45. Hadjad J. J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020; 369 (6504): 718-724. doi: 10.1126/science.abc6027

46. Fan C., Lu W., Li K., Ding Y., Wang J. ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19 patients. Front Med (Lausanne). 2021; 7: 563893. doi: 10.3389/fmed.2020.563893

47. Qi J., Zhou Y., Hua J., Zhang L., Bian J., Liu B., et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int J Environ Res Public Health. 2021; 18 (1): 284. doi: 10.3390/ijerph18010284

48. Adamyan L., Elagin V., Vechorko V., Stepanian A., Dashko A., Doroshenko D., et al. A review of recent studies on the effects of SARS-CoV-2 infection and SARS-CoV-2 vaccines on male reproductive health. Med Sci Monit. 2022; 28: e935879. doi: 10.12659/MSM.935879

49. Kaur G., Thompson L. A., Dufour J. M. Sertoli cells-immunological sentinels of spermatogenesis. Semin Cell Dev Biol. 2014; 30: 36-44. doi: 10.1016/j.semcdb.2014.02.011

50. Huang C., Ji X., Zhou W., Huang Z., Peng X., Fan L., et al. Coronavirus: A possible cause of reduced male fertility. Andrology. 2021; 9 (1): 80-87. doi: 10.1111/andr.12907

51. Zhang H., Yin Y., Wang G., Liu Z., Liu L., Sun F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep. 2014; 4: 4260. doi: 10.1038/srep04260

52. Pan F,, Xiao X., Guo J., Song Y., Li H., Patel D.P., et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020; 113(6): 1135-1139. doi: 10.1016/j.fertnstert.2020.04.024

53. Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., et al. Assessment of SARS-CoV-2 in human semen – a cohort study. Fertil Steril. 2020; 114 (2): 233-238. doi: 10.1016/j.fertnstert.2020.05.028

54. Kurashova N. A., Dashiev B. G., Kolesnikov S. I, Dmitrenok P. S., Kozlovskaya E. P., Kasyanov S. P., et al. Changes in spermatogenesis, lipoperoxidation processes and antioxidant protection in men with pathozoospermia after COVID-19 infection. The effectiveness of correction with a promising antioxidant complex. Bull Exp Biol Med. 2022; 173 (5): 572-577. (In Russ.). doi: 10.47056/0365-9615-2022-173-5-572-577

55. Abobaker A., Raba A. A. Does COVID-19 affect male fertility? World J Urol. 2021; 39 (3): 975-976. doi: 10.1007/s00345-020-03208-w

56. Tariq J., Chatterjee T., Andreoli L., Gupta L. COVID-19 and fertility – at the crossroads of autoimmunity and thrombosis. Rheumatol Int. 2021; 41 (11): 1885-1894. doi: 10.1007/s00296-021-04977-2

57. Kurashova N. A., Dashiev B. G., Kolesnikova L. I. Glutathionedependent mechanisms of antioxidant defense in men with pathozoospermia after COVID-19 infection. Int J Biomed. 2021; 11 (4): 543-545.

58. Shen Q., Xiao X., Aierken A., Yue W., Wu X., Liao M., et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med. 2020; 24 (16): 9472-9477. doi: 10.1111/jcmm.15541

59. Maresch C. C., Stute D. C., Alves M. G., Oliveira P. F., de Kretser D. M., Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: A systematic review. Hum Reprod Update. 2018; 24 (1): 86-105. doi: 10.1093/humupd/dmx033

60. Jiang Q., Linn T., Drlica K., Shi L. Diabetes as a potential compounding factor in COVID-19-mediated male subfertility. Cell Biosci. 2022; 12 (1): 35. doi: 10.1186/s13578-022-00766-x

61. Sathish T., Kapoor N., Cao Y., Tapp R. J., Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes Metab. 2021; 23 (3): 870-874. doi: 10.1111/dom.14269

62. Barrett C. E., Koyama A. K., Alvarez P., Chow W., Lundeen E. A., Perrine C. G., et al. Risk for newly diagnosed diabetes > 30 days after SARS-CoV-2 infection among persons aged < 18 years – United States, March 1, 2020 – June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022; 71 (2): 59-65. doi: 10.15585/mmwr.mm7102e2

63. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021; 594 (7862): 259-264. doi: 10.1038/s41586-021-03553-9

64. Yoon J. W., Ihm S. H., Kim K. W. Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes Res Clin Pract. 1989; 7 Suppl 1: S47-S58. doi: 10.1016/0168-8227(89)90088-0

65. Ashfaq U. A., Khalid H. Mechanism of hepatitis C virus-induced diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2017; 27 (4): 363-371. doi: 10.1615/CritRevEukaryotGeneExpr.2017020437

66. Yang J. K., Lin S. S., Ji X. J., Guo L. M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010; 47 (3): 193-199. doi: 10.1007/s00592-009-0109-4

67. Li J., Wang X., Chen J., Zuo X., Zhang H., Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020; 22 (10): 1935-1941. doi: 10.1111/dom.14057

68. Forcados G. E., Muhammad A., Oladipo O. O., Makama S., Meseko C. A. Metabolic implications of oxidative stress and inflammatory process in SARS-CoV-2 pathogenesis: Therapeutic potential of natural antioxidants. Front Cell Infect Microbiol. 2021; 11: 654813. doi: 10.3389/fcimb.2021.654813

69. Rychkova L. V., Darenskaya M. A., Semenova N. V., Kolesnikov S. I., Petrova A. G., Nikitina O. A., et al. Antioxidant status in children and adolescents with COVID-19. Acta biomedica scientifica. 2021; 6 (6-2): 29-36. (In Russ.). doi: 10.29413/ABS.2021-6.6-2.4

70. Rychkova L. V., Darenskaya M. A., Semenova N. V., Kolesnikov S. I., Petrova A. G., Nikitina O. A., et al. Oxidative stress intensity in children and adolescents with a new coronavirus infection. Int J Biomed. 2022; 12 (2): 242-246. doi: 10.21103/Article12(2)_OA7

71. Damani-Yokota P., Zhang F., Gillespie A., Park H., Burnside A., Telfer J. C., et al. Transcriptional programming and gene regulation in WC1+ γδ T cell subpopulations. Mol Immunol. 2022; 142: 50-62. doi: 10.1016/j.molimm.2021.12.016

72. Rampoldi F., Ullrich L., Prinz I. Revisiting the interaction of γδ T-cells and B-cells. Cells. 2020; 9 (3): 743. doi: 10.3390/cells9030743

73. Feng M., Fang F., Fang T., Jiao H., You S., Wang X., et al. Sox13 promotes hepatocellular carcinoma metastasis by transcriptionally activating Twist1. Lab Invest. 2020; 100 (11): 1400-1410. doi: 10.1038/s41374-020-0445-0

74. Daigle M,, Roumaud P., Martin L. J. Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem. 2015; 407 (1-2): 209-221. doi: 10.1007/s11010-015-2470-7

75. Kasimiotis H., Myers M. A., Argentaro A., Mertin S., Fida S., Ferraro T., et al. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes. 2000; 49 (4): 555-561. doi: 10.2337/diabetes.49.4.555

76. Davis T. M., Mehta Z., Mackay I. R., Cull C. A., Bruce D. G., Fida S., et al. Autoantibodies to the islet cell antigen SOX-13 are associated with duration but not type of diabetes. Diabet Med. 2003; 20 (3): 198-204. doi: 10.1046/j.1464-5491.2003.00897.x

77. Fida S., Myers M. A., Whittingham S., Rowley M. J., Ozaki S., Mackay I. R. Autoantibodies to the transcriptional factor SOX13 in primary biliary cirrhosis compared with other diseases. J Autoimmun. 2002; 19 (4): 251-257. doi: 10.1006/jaut.2002.0622

78. Li X., Zai J., Wang X., Li Y. Potential of large “first generation” human-to-human transmission of 2019-nCoV. J Med Virol. 2020; 92 (4): 448-454. doi: 10.1002/jmv.25693

79. Lim K. P., Liu D. X. The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem. 2001; 276 (20): 17515-17523. doi: 10.1074/jbc.M009731200

80. Thomas S. Towards determining the epitopes of the structural proteins of SARS-CoV-2. Methods Mol Biol. 2022; 2410: 265-272. doi: 10.1007/978-1-0716-1884-4_12

81. Nuovo G., Tili E., Suster D., Matys E., Hupp L., Magro C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol. 2020; 48: 151600. doi: 10.1016/j.anndiagpath.2020.151600

82. Madan M., Pahuja S., Mohan A., Pandey R. M., Madan K., Hadda V., et al. TB infection and BCG vaccination: Are we protected from COVID-19? Public Health. 2020; 185: 91-92. doi: 10.1016/j.puhe.2020.05.042

83. Netea M. G., Giamarellos-Bourboulis E. J., Domínguez-Andrés J., Curtis N., van Crevel R., van de Veerdonk F. L., et al. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020; 181 (5): 969-977. doi: 10.1016/j.cell.2020.04.042


Review

For citations:


Orlova E.A., Kondratov I.G., Ogarkov O.B., Kolesnikova L.I. Mechanisms of autoimmune pathology in post-COVID syndrome. Acta Biomedica Scientifica. 2022;7(5-1):62-76. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-1.8

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)