1. Muzyka IM, Estephan B. Somatosensory evoked potentials. Handb Clin Neurol. 2019; 160: 523-540. https://doi.org/10.1016/B978-0-44464032-1.00035-7
2. Alifirova VM, Tolmachev IV, Koroleva ES, Kucherova KS. Somatosensory evoked potentials in the evaluation of motor rehabilitation efficacy in patients with ischemic stroke. Annals of Clinical and Experimental Neurology. 2020; 14(3): 77-81. (In Russ.). https://doi.org/10.25692/ACEN.2020.3.10
3. Sysoev YuI, Kroshkina KA, Okovityi SV. Characteristic of somatosensory evoked potentials in rats after traumatic brain injury. Russian Journal of Physiology. 2019; 105(6): 749-760. (In Russ.). https://doi.org/10.1134/S0869813919060074
4. Sysoev YI, Prikhodko VA, Chernyakov RT, Idiyatullin RD, Musienko PE, Okovityi SV. Effects of alpha-2 adrenergic agonist mafedine on brain electrical activity in rats after traumatic brain injury. Brain Sci. 2021; 11(8): 981. https://doi.org/10.3390/brainsci11080981
5. Lopez MS, Vemuganti R. Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol. 2018; 1717: 101-113. https://doi.org/10.1007/978-1-4939-7526-6_9
6. Hu Q, Liu L, Zhou L, Lu H, Wang J, Chen X, et al. Effect of fluoxetine on HIF-1αNetrin/VEGF cascade, angiogenesis and neuroprotection in a rat model of transient middle cerebral artery occlusion. Exp Neurol. 2020; 329: 113312. https://doi.org/10.1016/j.expneurol.2020.113312
7. Miao Y, Wang R, Wu H, Yang S, Qiu Y. CPCGI confers neuroprotection by enhancing blood circulation and neurological function in cerebral ischemia/reperfusion rats. Mol Med Rep. 2019; 20(3): 2365-2372. https://doi.org/10.3892/mmr.2019.10472
8. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and longterm recovery after cerebral ischemia. Stroke. 2016; 47(2): 498-504. https://doi.org/10.1161/STROKEAHA.115.012079
9. Wu G, McBride DW, Zhang JH. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol Dis. 2018; 110: 59-67. https://doi.org/10.1016/j.nbd.2017.11.009
10. Colli BO, Tirapelli DP, Carlotti CG Jr, Lopes Lda S, Tirapelli LF. Biochemical evaluation of focal non-reperfusion cerebral ischemia by middle cerebral artery occlusion in rats. Arq Neuropsiquiatr. 2008; 66(3B): 725-730. https://doi.org/10.1590/s0004282x2008000500023
11. Cui D, Jia S, Yu J, Li D, Li T, Liu Y, et al. Alleviation of cerebral infarction of rats with middle cerebral artery occlusion by inhibition of aquaporin 4 in the supraoptic nucleus. ASN Neuro. 2020; 12: 1759091420960550. https://doi.org/10.1177/1759091420960550
12. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 7th ed. Cambridge, MA: Academic Press; 2013.
13. Calloni RL, Winkler BC, Ricci G, Poletto MG, Homero WM, Serafini EP, et al. Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. Acta Cir Bras. 2010; 25(5): 428-433. https://doi.org/10.1590/s0102-86502010000500008
14. Mazzini L, Pisano F, Zaccala M, Miscio G, Gareri F, Galante M. Somatosensory and motor evoked potentials at different stages of recovery from severe traumatic brain injury. Arch Phys Med Rehabil. 1999; 80(1): 33-39. https://doi.org/10.1016/s0003-9993(99)90304-0
15. Garkavenko VV, Voloshin MY, Limanskaya LI, Podol’skii MS, Karaban’IN. Parkinson’s disease and aging: Changes of somatosensory evoked potentials in humans. Neurophysiology. 1994; 26(2): 114-118. https://doi.org/10.1007/BF01053088
16. Bollen EL, Arts RJ, Roos RA, van der Velde EA, Buruma OJ. Somatosensory evoked potentials in Huntington’s chorea. Electroencephalogr Clin Neurophysiol. 1985; 62(4): 235-240. https://doi.org/10.1016/0168-5597(85)90001-2
17. Trenado C, Elben S, Friggemann L, Gruhn S, Groiss SJ, Vesper J, et al. Long-latency somatosensory evoked potentials of the subthalamic nucleus in patients with Parkinson’s disease. PLoS One. 2017; 12(1): e0168151. https://doi.org/10.1371/journal.pone.0168151
18. Noachtar S, Lüders HO, Dinner DS, Klem G. Ipsilateral median somatosensory evoked potentials recorded from human somatosensory cortex. Electroencephalogr Clin Neurophysiol. 1997; 104(3): 189-198. https://doi.org/10.1016/s0168-5597(97)00013-0
19. Schrafl-Altermatt M, Dietz V. Task-specific role of ipsilateral pathways: Somatosensory evoked potentials during cooperative hand movements. Neuroreport. 2014; 25(18): 1429-1432. https://doi.org/ 10.1097/WNR.0000000000000285
20. Nihashi T, Naganawa S, Sato C, Kawai H, Nakamura T, Fukatsu H, et al. Contralateral and ipsilateral responses in primary somatosensory cortex following electrical median nerve stimulation - an fMRI study. Clin Neurophysiol. 2005; 116(4): 842-848. https://doi.org/10.1016/j.clinph.2004.10.011
21. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A. Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 1990; 21(10): 1485-1488. https://doi.org/10.1161/01. str.21.10.1485
22. Chang SJ, Cherng JH, Wang DH, Yu SP, Liou NH, Hsu ML. Transneuronal degeneration of thalamic nuclei following middle cerebral artery occlusion in rats. Biomed Res Int. 2016; 2016: 3819052. https://doi.org/10.1155/2016/3819052
23. Al-Rawi MA, Hamdan FB, Abdul-Muttalib AK. Somatosensory evoked potentials as a predictor for functional recovery of the upper limb in patients with stroke. J Stroke Cerebrovasc Dis. 2009; 18(4): 262-268. https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.11.002
24. Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, et al. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol. 2015; 272: 17-25. https://doi.org/10.1016/j.expneurol.2015.03.017
25. Cameron MH, Horak FB, Herndon RR, Bourdette D. Imbalance in multiple sclerosis: A result of slowed spinal somatosensory conduction. Somatosens Mot Res. 2008; 25(2): 113-122. https://doi.org/10.1080/08990220802131127