Changes in somatosensory evoked potentials in rats following transient cerebral ischemia
https://doi.org/10.29413/ABS.2022-7.4.22
Abstract
Background. Cerebral ischemia induced by transient middle cerebral artery occlusion is one of the most popular ischemic stroke models used to evaluate drug candidates with neuroprotective properties. The possibilities of combining this model with neurophysiological techniques (e.g., electroencephalography, electrocorticography, evoked potential registration, etc.) to assess the effectiveness of novel pharmacotherapeutic strategies appear to be of great interest to current biomedical research.
The aim. Identifying specific changes in somatosensory evoked potentials occurring after cerebral ischemia induced by middle cerebral artery occlusion in rats.
Materials and methods. A total number of 18 white outbred male rats were randomized into 3 groups by 6 animals in each: 1) control (presumably healthy animals); 2) ischemia-30 (30-minute middle cerebral artery occlusion); 3) ischemia-45 (45-minute occlusion). At post-surgery day 7, cortical responses to sequential electrical stimulation of left and right n. ischiadicus were registered. N1, P2, N2, P3, and N3 peak latencies and amplitudes, peak-to-peak interval durations and amplitudes were calculated. Spearman’s rank correlation coefficients were used to assess the relationship between ischemia duration and evoked potential parameters, and the Chaddock scale was used to qualitatively evaluate the strength of correlations.
Results. The rats subjected to cerebral ischemia demonstrated a decrease in some of the peak amplitudes of the ipsi- and contralateral somatosensory potentials evoked by n. ischiadicus stimulation. In the injured hemisphere, decreased P2 and N3 peak and P3–N3 interval amplitudes were registered ipsilaterally, and decreased P3 peak amplitudes and N2–P3 interval durations were observed contralaterally.
Conclusions. The obtained data suggest that somatosensory evoked potential registration and analysis can be used to evaluate the functional state of central nerve tracts in rats subjected to cerebral ischemia.
About the Authors
Yu. I. SysoevRussian Federation
Yuriy I. Sysoev – Cand. Sc. (Biol.), Associate Professor at the Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University; Research Officer at the Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State University; Senior Research Officer at the Laboratory of Neuromodulation of Motor and Visceral Functions, Pavlov Institute of Physiology, Russian Academy of Sciences; Research Officer at the Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences
Professora Popova str. 4, Saint Petersburg 197376;
Universitetskaya embankment 7-9, unit 1050, Saint Petersburg 199034;
Makarova embankment 6, Saint Petersburg 199034;
Akademika Pavlova str. 12A, Saint Petersburg 197376
V. A. Prikhodko
Russian Federation
Veronika A. Prikhodko – Postgraduate, Teaching Assistant at the Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University; Junior Research Officer at the Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences
Professora Popova str. 4, Saint Petersburg 197376;
Akademika Pavlova str. 12A, Saint Petersburg 197376
I. A. Titovich
Russian Federation
Irina A. Titovich – Cand. Sc. (Biol.), Associate Professor at the Department of Pharmacology and Clinical Pharmacology
Professora Popova str. 4, Saint Petersburg 197376
V. E. Karev
Russian Federation
Vadim E. Karev – Dr. Sc. (Med.), Head of the Department of Tissue and Pathomorphological Research Methods
Professora Popova str. 9, Saint Petersburg 197022
S. V. Okovityy
Russian Federation
Sergey V. Okovityy – Dr. Sc. (Med.), Professor, Head of the Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University; Head of the Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences
Professora Popova str. 4, Saint Petersburg 197376
References
1. Muzyka IM, Estephan B. Somatosensory evoked potentials. Handb Clin Neurol. 2019; 160: 523-540. doi: 10.1016/B978-0-44464032-1.00035-7
2. Alifirova VM, Tolmachev IV, Koroleva ES, Kucherova KS. Somatosensory evoked potentials in the evaluation of motor rehabilitation efficacy in patients with ischemic stroke. Annals of Clinical and Experimental Neurology. 2020; 14(3): 77-81. (In Russ.). doi: 10.25692/ACEN.2020.3.10
3. Sysoev YuI, Kroshkina KА, Okovityi SV. Characteristic of somatosensory evoked potentials in rats after traumatic brain injury. Russian Journal of Physiology. 2019; 105(6): 749-760. (In Russ.). doi: 10.1134/S0869813919060074
4. Sysoev YI, Prikhodko VA, Chernyakov RT, Idiyatullin RD, Musienko PE, Okovityi SV. Effects of alpha-2 adrenergic agonist mafedine on brain electrical activity in rats after traumatic brain injury. Brain Sci. 2021; 11(8): 981. doi: 10.3390/brainsci11080981
5. Lopez MS, Vemuganti R. Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol. 2018; 1717: 101-113. doi: 10.1007/978-1-4939-7526-6_9
6. Hu Q, Liu L, Zhou L, Lu H, Wang J, Chen X, et al. Effect of fluoxetine on HIF-1αNetrin/VEGF cascade, angiogenesis and neuroprotection in a rat model of transient middle cerebral artery occlusion. Exp Neurol. 2020; 329: 113312. doi: 10.1016/j.expneurol.2020.113312
7. Miao Y, Wang R, Wu H, Yang S, Qiu Y. CPCGI confers neuroprotection by enhancing blood circulation and neurological function in cerebral ischemia/reperfusion rats. Mol Med Rep. 2019; 20(3): 2365-2372. doi: 10.3892/mmr.2019.10472
8. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and longterm recovery after cerebral ischemia. Stroke. 2016; 47(2): 498-504. doi: 10.1161/STROKEAHA.115.012079
9. Wu G, McBride DW, Zhang JH. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol Dis. 2018; 110: 59-67. doi: 10.1016/j.nbd.2017.11.009
10. Colli BO, Tirapelli DP, Carlotti CG Jr, Lopes Lda S, Tirapelli LF. Biochemical evaluation of focal non-reperfusion cerebral ischemia by middle cerebral artery occlusion in rats. Arq Neuropsiquiatr. 2008; 66(3B): 725-730. doi: 10.1590/s0004282x2008000500023
11. Cui D, Jia S, Yu J, Li D, Li T, Liu Y, et al. Alleviation of cerebral infarction of rats with middle cerebral artery occlusion by inhibition of aquaporin 4 in the supraoptic nucleus. ASN Neuro. 2020; 12: 1759091420960550. doi: 10.1177/1759091420960550
12. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 7th ed. Cambridge, MA: Academic Press; 2013.
13. Calloni RL, Winkler BC, Ricci G, Poletto MG, Homero WM, Serafini EP, et al. Transient middle cerebral artery occlusion in rats as an experimental model of brain ischemia. Acta Cir Bras. 2010; 25(5): 428-433. doi: 10.1590/s0102-86502010000500008
14. Mazzini L, Pisano F, Zaccala M, Miscio G, Gareri F, Galante M. Somatosensory and motor evoked potentials at different stages of recovery from severe traumatic brain injury. Arch Phys Med Rehabil. 1999; 80(1): 33-39. doi: 10.1016/s0003-9993(99)90304-0
15. Garkavenko VV, Voloshin MY, Limanskaya LI, Podol’skii MS, Karaban’IN. Parkinson’s disease and aging: Changes of somatosensory evoked potentials in humans. Neurophysiology. 1994; 26(2): 114-118. doi: 10.1007/BF01053088
16. Bollen EL, Arts RJ, Roos RA, van der Velde EA, Buruma OJ. Somatosensory evoked potentials in Huntington’s chorea. Electroencephalogr Clin Neurophysiol. 1985; 62(4): 235-240. doi: 10.1016/0168-5597(85)90001-2
17. Trenado C, Elben S, Friggemann L, Gruhn S, Groiss SJ, Vesper J, et al. Long-latency somatosensory evoked potentials of the subthalamic nucleus in patients with Parkinson’s disease. PLoS One. 2017; 12(1): e0168151. doi: 10.1371/journal.pone.0168151
18. Noachtar S, Lüders HO, Dinner DS, Klem G. Ipsilateral median somatosensory evoked potentials recorded from human somatosensory cortex. Electroencephalogr Clin Neurophysiol. 1997; 104(3): 189-198. doi: 10.1016/s0168-5597(97)00013-0
19. Schrafl-Altermatt M, Dietz V. Task-specific role of ipsilateral pathways: Somatosensory evoked potentials during cooperative hand movements. Neuroreport. 2014; 25(18): 1429-1432. doi: 10.1097/WNR.0000000000000285
20. Nihashi T, Naganawa S, Sato C, Kawai H, Nakamura T, Fukatsu H, et al. Contralateral and ipsilateral responses in primary somatosensory cortex following electrical median nerve stimulation – an fMRI study. Clin Neurophysiol. 2005; 116(4): 842-848. doi: 10.1016/j.clinph.2004.10.011
21. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A. Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 1990; 21(10): 1485-1488. doi: 10.1161/01. str.21.10.1485
22. Chang SJ, Cherng JH, Wang DH, Yu SP, Liou NH, Hsu ML. Transneuronal degeneration of thalamic nuclei following middle cerebral artery occlusion in rats. Biomed Res Int. 2016; 2016: 3819052. doi: 10.1155/2016/3819052
23. Al-Rawi MA, Hamdan FB, Abdul-Muttalib AK. Somatosensory evoked potentials as a predictor for functional recovery of the upper limb in patients with stroke. J Stroke Cerebrovasc Dis. 2009; 18(4): 262-268. doi: 10.1016/j.jstrokecerebrovasdis.2008.11.002
24. Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, et al. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol. 2015; 272: 17-25. doi: 10.1016/j.expneurol.2015.03.017
25. Cameron MH, Horak FB, Herndon RR, Bourdette D. Imbalance in multiple sclerosis: A result of slowed spinal somatosensory conduction. Somatosens Mot Res. 2008; 25(2): 113-122. doi: 10.1080/08990220802131127
Review
For citations:
Sysoev Yu.I., Prikhodko V.A., Titovich I.A., Karev V.E., Okovityy S.V. Changes in somatosensory evoked potentials in rats following transient cerebral ischemia. Acta Biomedica Scientifica. 2022;7(4):190-200. (In Russ.) https://doi.org/10.29413/ABS.2022-7.4.22