Preview

Acta Biomedica Scientifica

Advanced search

Analysis of temperaturepain sensitivity in patients with consequences of the cervical spinal cord injury

https://doi.org/10.29413/ABS.2022-7.3.20

Abstract

Background. The standard neurological assessment in patients with long-term consequences of spine-and-spinal cord injury and severe neurological deficit does not allow to accurately identify changes in sensitivity that determine the level, degree and nature of spinal cord injury, as well as to evaluate the minimal dynamics of these disorders with different treatment options. As a result, an objective instrumental assessment of the sensory sphere in the long-term period of spinal cord injury has not lost its relevance.
The aim. To conduct an instrumental study of the temperature-pain sensitivity condition in patients with partial gross damage to the cervical spinal cord in the long-term period of the disease (type B on the ASIA scale).
Methods. We examined 23 patients with consequences of vertebral fractures of the cervical spine in the late period of traumatic spinal cord disease, Grade B on the ASIA scale ASIA. The clinical analysis of sensitive disorders was performed according to ISNCSCI and ASIA scales. While studying the temperature-pain sensitivity the threshold of thermal sensitivity and the threshold of pain from hot were determined in СIV–SI dermatomes on the right and on the left using an electric
esthesiometer.
Results. The examined patients had hypesthesia of heat and pain sensitivity, hyperesthesia of pain sensitivity, thermoanesthesia and thermoanalgesia. The degree of changes in the temperature-pain sensitivity depended on the topographic localization of dermatomes. The more distally the study area was located from the level of damage, the more pronounced the disorders were. In 30.4 % of patients, the pain sensitivity from hot in the chain of dermatomes from CIV to SI was preserved on at least one side. The combination of thermoanesthesia with thermoanalgesia was observed in 69.6 % of cases in dermatomes with ThVII and distally.
Conclusions. The instrumentally registered level of the temperature-pain sensitivity disorder did not correspond to clinically determined localization of sensory disorders. The range of discrepancy ranged from 2 to 12 dermatomes, with defining the sensitivity subclinical deficit over the area of clinical sensory disorders.

About the Authors

E. N. Shchurova
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics 
Russian Federation

 Dr. Sc. (Biol.), Leading Research Officer at the Clinical Laboratory, Clinic of Spine Pathology and Rare Diseases

 M. Ulyanovoy str. 6, Kurgan 640014, Russian Federation 



O. G. Prudnikova
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics 
Russian Federation

 Dr. Sc. (Med.), Neurosurgeon, Traumatologist-Orthopedist, Senior Research Officer, Head of the Traumatology and Orthopedic Department No. 10, Clinic of Spine Pathology and Rare Diseases

 M. Ulyanovoy str. 6, Kurgan 640014, Russian Federation 



A. A. Kachesova
National Ilizarov Medical Research Centre for Traumatology and Ortopaedics 
Russian Federation

 Рostgraduate, Neurologist 

 M. Ulyanovoy str. 6, Kurgan 640014, Russian Federation 



References

1. Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic spinal injury: Global epidemiology and worldwide volume. World Neurosurg. 2018; 113: e345-e363. doi: 10.1016/j.wneu.2018.02.033

2. Morozov IN, Mlyavykh SG. Epidemiology of spine and spinal cord injury (review). Medical Almanac. 2011; 4(17): 157-159. (In Russ.).

3. Yilmaz U, Hellen P. Cervical spine trauma. Radiologe. 2016; 56(8): 667-672. [In German]. doi: 10.1007/s00117-016-0135-5

4. Bárbara-Bataller E, Méndez-Suárez JL, Alemán-Sánchez C, Sánchez-Enríquez J, Sosa-Henríquez M. Change in the profile of traumatic spinal cord injury over 15 years in Spain. Scand J Trauma Resusc Emerg Med. 2018; 26(1): 27. doi: 10.1186/s13049-018-0491-4

5. Bakhsh A, Aljuzair AH, Eldawoody H. An epidemiological overview of spinal trauma in the kingdom of Saudi Arabia. Spine Surg Relat Res. 2020; 4(4): 300-304. doi: 10.22603/ssrr.2019-0118

6. Wang H, Xiang Q, Li C, Zhou Y. Epidemiology of traumatic cervical spinal fractures and risk factors for traumatic cervical spinal cord injury in China. J Spinal Disord Tech. 2013; 26(8): E306-E313. doi: 10.1097/BSD.0b013e3182886db9

7. Erokhin AN, Kobizev AE, Sergeenko OM, Turovinina EF. Phrenic nerve stimulation in complex rehabilitation for cervical spinal cord injury using modified implantable device (case report). Genij Ortopedii. 2020; 26(1): 89-94. (In Russ.). doi: 10.18019/1028-4427-2020-26-1-89-94

8. Rabinstein AA. Traumatic spinal cord injury. Continuum (Minneap Minn). 2018; 24(2, Spinal Cord Disorders): 551-566. doi: 10.1212/CON.0000000000000581

9. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, et al. Traumatic spinal cord injury – repair and regeneration. Neurosurgery. 2017; 80(3S): S9-S22. doi: 10.1093/neuros/nyw080

10. Ong B, Wilson JR, Henzel MK. Management of the patient with chronic spinal cord injury. Med Clin North Am. 2020; 104(2): 263-278. doi: 10.1016/j.mcna.2019.10.006

11. Burns AS, Marino RJ, Kalsi-Ryan S, Middleton JW, Tetreault LA, Dettori JR, et al. Type and timing of rehabilitation following acute and subacute spinal cord injury: A systematic review. Global Spine J. 2017; 7(3S): 175S-194S. doi: 10.1177/2192568217703084

12. Amelina OA. Trauma of spinal cord. In: Makarov AYu (ed). Clinical neurology with the basics of medical and social expertise. Saint Petersburg: Zolotoy vek; 1998: 232-248. (In Russ.).

13. Ditunno J, Young W, Donovan W, Creasey G. The international standards booklet for neurological and functional classification of spinal cord injury. Paraplegia. 1994; 32(2): 70-80. doi: 10.1038/sc.1994.13

14. Kirshblum S, Snider B, Eren F, Guest J. Characterizing natural recovery after traumatic spinal cord injury. J Neurotrauma. 2021; 38(9): 1267-1284. doi: 10.1089/neu.2020.7473

15. Hales M, Biros E, Reznik JE. Reliability and validity of the sensory component of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI): A systematic review. Top Spinal Cord Inj Rehabil. 2015; 21(3): 241-249. doi: 10.1310/sci2103-241

16. Mulcahey MJ, Gaughan J, Betz RR, Vogel LC. Rater agreement on the ISNCSCI motor and sensory scores obtained before and after formal training in testing technique. J Spinal Cord Med. 2007; 30(1): S146-S149.

17. Prudnikova OG, Kachesova AA, Ryabykh SO. Rehabilitation of patients in late period after spinal cord injury: A metaanalysis of literature data. Spine Surgery. 2019; 16(3): 8-16. (In Russ.). doi: 10.14531/ss2019.3.8-16

18. Kramer JK, Taylor P, Steeves JD, Curt A. Dermatomal somatosensory evoked potentials and electrical perception thresholds during recovery from cervical spinal cord injury. Neurorehabil Neural Repair. 2010; 24(4): 309-317. doi: 10.1177/1545968309348312

19. Macklin RA, Brooke VJ, Calabro FJ, Ellaway PH, Perez MA. Discrepancies between clinical assessments of sensory function and electrical perceptual thresholds after incomplete chronic cervical spinal cord injury. Spinal Cord. 2016; 54(1): 16-23. doi: 10.1038/sc.2015.104

20. Schuld C, Franz S, Brüggemann K, Heutehaus L, Weidner N, Kirshblum SC, et al. International standards for neurological classification of spinal cord injury: Impact of the revised worksheet (revision 02/13) on classification performance. J Spinal Cord Med. 2016; 39(5): 504-512. doi: 10.1080/10790268.2016.1180831

21. Marino R, Jones L, Kirshblum S, Tal J, Dasgupta A. Reliability and repeatability of the motor and sensory examination of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2008; 31(2): 166-170. doi: 10.1080/10790268.2008.11760707

22. Krassioukov A, Wolfe DL, Hsieh JT, Hayes KC, Durham CE. Quantitative sensory testing in patients with incomplete spinal cord injury. Arch Phys Med Rehabil. 1999; 80(10): 1258-1263. doi: 10.1016/s0003-9993(99)90026-6

23. Nicotra A, Ellaway P. Thermal perception thresholds: Assessing the level of human spinal cord injury. Spinal Cord. 2006; 44(10): 617-624. doi: 10.1038/sj.sc.3101877

24. Savic G, Bergström EMK, Davey NJ, Ellaway PH, Frankel HL, et al. Quantitative sensory tests (perceptual thresholds) in patients with spinal cord injury. J Rehabil Res Dev. 2007; 44(1): 77-82. doi: 10.1682/jrrd.2005.08.0137

25. Hubli M, Dietz V. The physiological basis of neurorehabilitation-locomotor training after spinal cord injury. J Neuroeng Rehabil. 2013; 10: 5. doi: 10.1186/1743-0003-10-5

26. Ozdemir RA, Perez MA. Afferent input and sensory function after human spinal cord injury. J Neurophysiol. 2018; 119(1): 134-144. doi: 10.1152/jn.00354.2017

27. Finnerup NB, Johannesen IL, Bach FW, Jensen TS. Sensory function above lesion level in spinal cord injury patients with and without pain. Somatosensory Mot Res. 2003; 20(1): 71-76. doi: 10.1080/0899022031000083843

28. Walsh LD, Moseley GL, Taylor JL, Gandevia SC. Proprioceptive signals contribute to the sense of body ownership. J Physiol. 2011; 589(Pt 12): 3009-3021. doi: 10.1113/jphysiol.2011.204941

29. Kirshblum S, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, et al. Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J Spinal Cord Med. 2011; 34(6): 547-554. doi: 10.1179/107902611X13186000420242

30. Mucke M, Cuhls C, Radbruch L, Baron R, Maier C, Tölle T, et al. Quantitative sensory testing. Schmerz. 2014; 28: 635-648. [In German]. doi: 10.1007/s00482-014-1485-4

31. Mano H, Yoshida W, Shibata K, Zhang S, Koltzenburg M, Kawato M, et al. Thermosensory perceptual learning is associated with structural brain changes in parietal-opercular (SII) cortex. J Neurosci. 2017; 37(39): 9380-9388. doi: 10.1523/JNEUROSCI.1316-17.2017

32. Mohammed H, Hollis ER. 2nd. Cortical reorganization of sensorimotor systems and the role of intracortical circuits after spinal cord injury. Neurotherapeutics. 2018; 15(3): 588-603. doi: 10.1007/s13311-018-0638-z

33. Simis M, Camsari DD, Imamura M, Filippo TRM, De Souza DR, Battistella LR, et al. Electroencephalography as a biomarker for functional recovery in spinal cord injury patients. Front Hum Neurosci. 2021; 15: 548558. doi: 10.3389/fnhum.2021.548558

34. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014; 137(Pt 3): 654-667. doi: 10.1093/brain/awt262

35. Beauparlant J, van den Brand R, Barraud Q, Friedli L, Musienko P, Dietz V, et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain. 2013; 136(Pt 11): 3347-3361. doi: 10.1093/brain/awt204

36. Rioult-Pedotti MS, Donoghue JP, Dunaevsky A. Plasticity of the synaptic modification range. J Neurophysiol. 2007; 98(6): 3688-3695. doi: 10.1152/jn.00164.2007

37. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004; 7(3): 269-277. doi: 10.1038/nn1195

38. Lin CS, Macefield VG, Elam M, Wallin BG, Engel S, Kiernan MC. Axonal changes in spinal cord injured patients distal to the site of injury. Brain. 2007; 130(Pt 4): 985-994. doi: 10.1093/brain/awl339

39. Baindurashvili AG, Vissarionov SV, Belianchikov SM, Kartavenko KA, Solokhina IYu, Kozyrev AS, et al. Comprehensive treatment of a patient with complicated thoracic spine injury using percutaneous electrical spinal cord stimulation (case report). Genij Ortopedii. 2020; 26(1): 79-88. (In Russ.). doi: 10.18019/1028-4427-2020-26-1-79-88

40. Pfau DB, Haroun O, Lockwood DN, Maier C, Schmitter M, Vollert J, et al. Mechanical detection and pain thresholds: Comparability of devices using stepped and ramped stimuli. Pain Rep. 2020; 5(6): e865. doi: 10.1097/PR9.0000000000000865


Review

For citations:


Shchurova E.N., Prudnikova O.G., Kachesova A.A. Analysis of temperaturepain sensitivity in patients with consequences of the cervical spinal cord injury. Acta Biomedica Scientifica. 2022;7(3):190-202. (In Russ.) https://doi.org/10.29413/ABS.2022-7.3.20

Views: 836


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)