Preview

Acta Biomedica Scientifica

Advanced search

Regulatory effect of polyamines and indole on expression of stress adaptation genes in Escherichia coli

https://doi.org/10.29413/ABS.2022-7.3.16

Abstract

Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.
The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.
Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.
Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.
Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.

About the Authors

E. A. Khaova
Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences; Perm State National Research University 
Russian Federation

 Postgraduate, Laboratory Assistant at the Laboratory of Microbial Adaptation;
Junior Research Officer at the Laboratory of Organic Synthesis

Goleva str. 13, Perm 614081, Russian Federation 

Bukireva str. 15, Perm 614068, Russian Federation 



N. M. Kashevarova
Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences 
Russian Federation

 Junior Research Officer at the Laboratory of Microbial Adaptation

Goleva str. 13, Perm 614081, Russian Federation 



A. G. Tkachenko
Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences; Perm State National Research University 
Russian Federation

 Dr. Sc. (Med.), Head of the Laboratory of Microbial Adaptation; Professor
at the Department of Microbiology and Immunology

 Goleva str. 13, Perm 614081, Russian Federation 

 Bukireva str. 15, Perm 614068, Russian Federation 



References

1. Tkachenko AG. Molecular mechanisms of stress responses of microorganisms. Ekaterinburg, 2012. (In Russ.).

2. Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985; 49(1): 81-99. doi: 10.1128/mr.49.1.81-99.1985

3. Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: Essential factors for growth and survival. Planta. 2008; 228(3): 367-381. doi: 10.1007/s00425-008-0772-7

4. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: The role of polyamines in the cell. J Mol Biol. 2015; 427(21): 3389-3406. doi: 10.1016/j.jmb.2015.06.020

5. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010; 42(1): 39-51. doi: 10.1016/j.biocel.2009.07.009

6. Igarashi K, Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J Biol Chem. 2018; 293(48): 18702-18709. doi: 10.1074/jbc.TM118.003465

7. Igarashi K, Ito K, Kashiwagi K. Polyamine uptake systems in Escherichia coli. Res Microbiol. 2001; 152(3-4): 271-278. doi: 10.1016/s0923-2508(01)01198-6

8. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, et al. Polyamines: Fundamental characters in chemistry and biology. Amino Acids. 2010; 38(2): 393-403. doi: 10.1007/s00726-009-0396-7

9. Zarkan A, Liu J, Matuszewska M, Gaimster H, Summers DK. Local and universal action: The paradoxes of indole signalling in bacteria. Trends Microbiol. 2020; 28(7): 566-577. doi: 10.1016/j.tim.2020.02.007

10. Nesterova LY, Akhova AV, Tkachenko AG. Influence of indole on intracellular polyamines and antibiotic susceptibility of Escherichia coli. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021; 76(4): 219-224. (In Russ.).

11. Tkachenko AG, Nesterova LY. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Mosc). 2003; 68(8): 850-856. doi: 10.1023/a:1025790729797

12. Tkachenko AG, Shumkov MS, Akhova AV. Putrescine as a modulator of the level of RNA polymerase sigma S subunit in Escherichia coli cells under acid stress. Biochemistry (Mosc). 2006; 71(2): 185-193. doi: 10.1134/s0006297906020118

13. Tkachenko AG, Kashevarova NM, Karavaeva EA, Shumkov MS. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin. FEMS Microbiol Lett. 2014; 361(1): 25-33. doi: 10.1111/1574-6968.12613

14. Tkachenko AG, Kashevarova NM, Tyuleneva EA, Shumkov MS. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol Lett. 2017; 364(9): fnx084. doi: 10.1093/femsle/fnx084

15. Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008; 68(1): 4-16. doi: 10.1111/j.1365-2958.2008.06126.x

16. Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppée JY, et al. Sleeping ribosomes: Bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience. 2021; 24(10): 103128. doi: 10.1016/j.isci.2021.103128

17. Magnusson LU, Farewell A, Nyström T. ppGpp: A global regulator in Escherichia coli. Trends Microbiol. 2005;13(5): 236-242. doi: 10.1016/j.tim.2005.03.008

18. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015; 13(5): 298-309. doi: 10.1038/nrmicro3448

19. Bougdour A, Gottesman S. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci USA. 2007; 104(31): 12896-12901. doi: 10.1073/pnas.0705561104

20. Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev. 2002a; 66(3): 373-395. doi: 10.1128/MMBR.66.3.373-395.2002

21. Hengge-Aronis R. Stationary phase gene regulation: What makes an Escherichia coli promoter sigmaS-selective? Curr Opin Microbiol. 2002b; 5(6): 591-595. doi: 10.1016/s1369-5274(02)00372-7

22. 22 Williams RM, Rimsky S. Molecular aspects of the E. coli nucleoid protein, H-NS: A central controller of gene regulatory networks. FEMS Microbiol Lett. 1997; 156(2): 175-185. doi: 10.1111/j.1574-6968.1997.tb12724.x

23. Johansson J, Eriksson S, Sondén B, Wai SN, Uhlin BE. Heteromeric interactions among nucleoid-associated bacterial proteins: localization of StpA-stabilizing regions in H-NS ofEscherichia coli.J Bacteriol. 2001; 183(7): 2343-2347. doi: 10.1128/JB.183.7.2343-2347.2001

24. Prossliner T, Skovbo Winther K, Sørensen MA, Gerdes K. Ribosome hibernation. Annu Rev Genet. 2018; 52: 321-348. doi: 10.1146/annurev-genet-120215-035130

25. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12): 6640-6645. doi: 10.1073/pnas.120163297

26. Tabor H, Hafner EW, Tabor CW. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: Characterization of two genes controlling lysine decarboxylase. J Bacteriol. 1980; 144(3): 952-956. doi: 10.1128/jb.144.3.952-956.1980

27. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009; 37(6): e45. doi: 10.1093/nar/gkp045

28. Rhee HJ, Kim EJ, Lee JK. Physiological polyamines: Simple primordial stress molecules. J Cell Mol Med. 2007; 11(4): 685-703. doi: 10.1111/j.1582-4934.2007.00077.x

29. Lightfoot HL, Hall J. Endogenous polyamine function – the RNA perspective. Nucleic Acids Res. 2014; 42(18): 11275-11290. doi: 10.1093/nar/gku837

30. Dorman CJ. H-NS: A universal regulator for a dynamic genome. Nat Rev Microbiol. 2004; 2(5): 391-400. doi: 10.1038/nrmicro883

31. Fang FC, Rimsky S. New insights into transcriptional regulation by H-NS. Curr Opin Microbiol. 2008; 11(2): 113-120. doi: 10.1016/j.mib.2008.02.011

32. Free A, Dorman CJ. The Escherichia coli stpA gene is transiently expressed during growth in rich medium and is induced in minimal medium and by stress conditions. J Bacteriol. 1997; 179(3): 909-918. doi: 10.1128/jb.179.3.909-918.1997

33. Wada A. Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells. 1998; 3(4): 203-208. doi: 10.1046/j.1365-2443.1998.00187.x

34. Polikanov YS, Blaha GM, Steitz TA. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science. 2012; 336(6083): 915-918. doi: 10.1126/science.1218538

35. Agafonov DE, Kolb VA, Nazimov IV, Spirin AS. A protein residing at the subunit interface of the bacterial ribosome. Proc Natl Acad Sci U S A. 1999; 96(22): 12345-12349. doi: 10.1073/pnas.96.22.12345

36. Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (Reading). 2013; 159(Pt 2): 402-410. doi: 10.1099/mic.0.064139-0

37. Gaimster H, Cama J, Hernández-Ainsa S, Keyser UF, Summers DK. The indole pulse: A new perspective on indole signalling in Escherichia coli. PLoS One. 2014; 9(4): e93168. doi: 10.1371/journal.pone.0093168


Review

For citations:


Khaova E.A., Kashevarova N.M., Tkachenko A.G. Regulatory effect of polyamines and indole on expression of stress adaptation genes in Escherichia coli . Acta Biomedica Scientifica. 2022;7(3):150-161. (In Russ.) https://doi.org/10.29413/ABS.2022-7.3.16

Views: 1042


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)