Preview

Acta Biomedica Scientifica

Advanced search

Obstructive sleep apnea and amyloid-β42 in adolescents: The results of a pilot study

https://doi.org/10.29413/ABS.2022-7.3.2

Abstract

Background. Obstructive sleep apnea (OSA) is a chronic condition characterized by repetitive collapse of the upper airway during sleep leading to intermittent hypoxia, excessive arousals and disrupt of sleep homeostasis. OSA is associated with obesity as well as pathological dynamics of cerebral beta-amyloid and dementia.
The aim. Comparative assessment of the plasma beta-amyloid 42 levels in adolescents, depending on the presence or absence of OSA and obesity.
Materials and methods. Seventy-four obese and non-obese male adolescents were included in the study. All participants underwent polysomnography to verify OSA and measure sleep parameters, and venipuncture for the assessment of betaamyloid 42 by enzyme-linked immunosorbent assay (ELISA).
Results. After polysomnography all adolescents have been divided into four study groups: OSA obese (group 1; n = 28); non-OSA obese (group 2; n = 20); OSA non-obese (group 3; n = 11), and non-OSA non-obese (group 4 – control; n = 15). OSA obese adolescents had significant elevations in beta-amyloid 42 plasma levels compared with participants from three other groups (р = 0.007, p = 0.047 and p = 0.0002, correspondingly). Compared to both OSA non-obese adolescents and the control group, non-OSA obese patients had similar beta-amyloid 42 blood concentrations (p = 0.167 and p = 0.155, correspondingly). However, patients from the group 3 showed significantly higher beta-amyloid 42 plasma levels than controls (p = 0.004).
Conclusions. Thus, OSA, accompanied by intermittent nocturnal hypoxia, and particularly OSA and obesity comorbidity, in adolescents is associated with increased beta-amyloid 42 circulating concentrations, which has a major role in pathogenesis of dementia. Beta-amyloid 42 plasma level may be recommended for use as early biomarker of cognitive impairment and neurodegenerative diseases, but future researches are needed.

About the Authors

O. N. Berdina
Scientific Сentre for Family Health and Human Reproduction Problems 
Russian Federation

 Cand. Sc. (Med.), Leading Research Officer at the Laboratory of Somnology and Neurophysiology

 Tymiryazeva str. 16, Irkutsk 664003, Russian Federation 



I. M. Madaeva
Scientific Сentre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Head of the Laboratory of Somnology and Neurophysiology 

 Tymiryazeva str. 16, Irkutsk 664003, Russian Federation 



S. E. Bolshakova
Scientific Сentre for Family Health and Human Reproduction Problems 
Russian Federation

 Cand. Sc. (Med.), Research Officer at the Laboratory of Somnology and Neurophysiology  

 Tymiryazeva str. 16, Irkutsk 664003, Russian Federation 



L. F. Sholokhov
Scientific Сentre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Professor, Head of the Laboratory of Endocrine System Physiology and Pathology 

 Tymiryazeva str. 16, Irkutsk 664003, Russian Federation 



L. V. Rychkova
Scientific Сentre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Director 

 Tymiryazeva str. 16, Irkutsk 664003, Russian Federation 



References

1. Tietjens JR, Claman D, Kezirian EJ, De Marco T, Mirzayan A, Sadroonri B, et al. Obstructive sleep apnea in cardiovascular disease: A review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019; 8(1): e010440. doi: 10.1161/JAHA.118.010440

2. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep disordered breathing in adults. Am J Epidemiol. 2013; 177(9): 1006-1014. doi: 10.1093/aje/kws342

3. Bitners AC, Arens R. Evaluation and management of children with obstructive sleep apnea syndrome. Lung. 2020; 198(2): 257-270. doi: 10.1007/s00408-020-00342-5

4. Shamsheva DS. Obstructive sleep apnea: Modern state of the problem. Lechebnoe delo. 2014; 1: 4-16. (In Russ.).

5. Kang K-T, Chou C-H, Weng W-C, Lee P-L, Hsu W-Ch. Associations between adenotonsillar hypertrophy, age, and obesity in children with obstructive sleep apnea. PLoS. 2013; 8: e78666. doi: 10.1371/journal.pone.0078666

6. Lisovskaya NA, Dubinina EA, Antonova TD, Korostovtseva LS, Sviryaev YuV, Alekhin AN, et al. Obstructive sleep apnea syndrome in overweight and obese adolescents: Focus on cognitive functioning. Arterial Hypertension. 2017; 23(4): 303-312. (In Russ.). doi: 10.18705/1607-419X-2017-23-4-303-312

7. Kolesnikova LI, Dzyatkovskaya EN, Dolgikh VV, Polyakov VM, Rychkova LV. Adaptive-developing strategy for schoolchildren health maintenance. Moscow: Literra; 2015. (In Russ.).

8. Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.2. Darien: American Academy of Sleep Medicine; 2015.

9. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: An American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017; 13(3): 479-504. doi: 10.5664/jcsm.6506

10. Kaditis AG, Alvarez MLA, Boudewyns A, Alexopoulos EI, Ersu R, Joosten K, et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: Diagnosis and management. Eur Respir J. 2016; 47(1): 69-94. doi: 10.1183/13993003.00385-2015

11. Kemstach VV, Korostovtseva LS, Golovkova-Kucheriavaia MS, Bochkarev MV, Sviryaev YuV, Alekhin AN. Obstructive sleep apnea syndrome and cognitive impairment. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2020; 120(1): 90-95. (In Russ.). doi: 10.17116/jnevro202012001190

12. Geraskina LA, Sharipov GG, Fonyakin AV, Maksimova MYu. The structure of sleep disordered breathing and cognitive impairment in cerebrovascular diseases. Russian Neurological Journal.2020; 25(3): 26-33. (In Russ.). doi: 10.30629/2658-7947-2020-25-3-26-33

13. Siachpazidou DI, Stavrou VT, Astara K, Pastaka Ch, Gogou E, Hatzoglou Ch, et al. Alzheimer’s disease in patients with obstructive sleep apnea syndrome. Tanaffos. 2020; 19(3): 176-185.

14. Emelin AYu, Lobzin VYu, Zheleznyak IS, Boikov IV. Alzheimer’s disease: A study guide. Saint Petersburg: VMedA; 2016. (In Russ.).

15. Lobzin VYu, Kolmakova KA, Emelin AYu. A novel view on Alzheimer’s disease pathogenesis: Modern concept of amyloid clearance. V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2018; 2: 22-28. (In Russ.). doi: 10.31363/2313-7053-2018-2-22-28

16. Kondratiev AN, Tsentsiper LM. Glymphatic system of the brain: Structure and practical significance. Russian Journal of Anaesthesiology and Reanimatology. 2019; 6: 72-80. (In Russ.). doi: 10.17116/anaesthesiology201906172

17. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia Science. 2020; 370(6512): 50-56. doi: 10.1126/science.abb8739

18. Madaeva IM, Berdina ON. Modern ideas of “slow sleep” and “REM-sleep” and their role in pathogenesis of Alzheimer’s disease (review of literature). Acta biomedica scientifica. 2017; 2(4): 48-52. (In Russ.). doi: 10.12737/article_59fad513a63772.41901536

19. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013; 342: 373-377. doi: 10.1126/science.1241224

20. Krysta K, Bratek A, Zawada K, Stepańczak R. Cognitive deficits in adults with obstructive sleep apnea compared to children and adolescents. J Neural Transm (Vienna). 2017; 124(1): 187-201. doi: 10.1007/s00702-015-1501-6

21. Madaeva I, Semenova N, Ukhinov E, Kurashova N, Sholohov L, Kolesnikov S, et al. Plasma amiloid β42 in patients with obstructive sleep apnea before and after CPAP-therapy: Pilot study. Int J Biomed. 2019; 9(3): 205-209. doi: 10.21103/Article9(3)_OA3

22. Mansour Y, Blackburn K, González-González LO, CalderónGarcidueñas L, Kulesza RJ. Auditory brainstem dysfunction, noninvasive biomarkers for early diagnosis and monitoring of Alzheimer’s disease in young urban residents exposed to air pollution. J Alzheimers Dis. 2019; 67(4): 1147-1155. doi: 10.3233/JAD-181186

23. Shi Y, Luo H, Liu H, Hou J, Feng Y, Chen J, et al. Related biomarkers of neurocognitive impairment in children with obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2019; 116: 38-42. doi: 10.1016/j.ijporl.2018.10.015

24. Kheirandish-Gozal L, Philby MF, Alonso-Álvarez ML, TeránSantos J, Gozal D. Biomarkers of Alzheimer disease in children with obstructive sleep apnea: Effect of adenotonsillectomy. Sleep. 2016; 39(6): 1225-1232. doi: 10.5665/sleep.5838

25. World Health Organization. Growth reference 5–19 years. BMI-for-age (5–19 years). 2007. URL: https://www. who.int/growthref/who2007_bmi_for_age/en/ [date of access: 14.05.2018].

26. Kolesnikova LI, Rychkova LV, Kolesnikov SI, Darenskaya MA, Gavrilova OA, Kravtsova OV, et al. The evaluation of the lipid peroxidation system and antioxidant defense in adolescent boys with exogenously constitutive obesity with using the coefficient of oxidative stress. Problems of Nutrition. 2018; 87(1): 28-34. (In Russ.). doi: 10.24411/0042-88332018-10003

27. Bogolepova AN. Modifiable risk factors and current approaches to the treatment of dementia. Medical Council. 2015; 10: 28-32. (In Russ.). doi: 10.21518/2079-701X-2015-10-28-33

28. Stavrovskaya AV, Voronkov DN, Shestakova EA, Gushchina AS, Olshansky AS, Yamshikova NG. Streptozocin-induced Alzheimer’s disease as an independent risk factor for the development of hyperglycemia in Wistar rats. Problems of Endocrinology. 2019; 65(5): 351-361. (In Russ.). doi: 10.14341/probl12126

29. Lee YH, Martin JM, Maple RL, Tharp WG, Pratley RE. Plasma amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinol. 2009; 90: 383-390. doi: 10.1159/000235555

30. Luciano R, Barraco GM, Muraca M, Ottino S, Spreghini MR, Sforza RW, et al. Biomarkers of Alzheimer disease, insulin resistance, and obesity in childhood. Pediatrics. 2015; 135(6): 1074-81. doi: 10.1542/peds.2014-2391

31. Iakovleva OV, Poluéktov MG, Liashenko EA, Levin OS. Sleep and cognitive impairment in neurodegenerative diseases. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2019; 119(4,2): 89-98. (In Russ.). doi: 10.17116/jnevro201911904289

32. Vorob'ev SV, Yanishevskij SN. The glymphatic system and its role in the development of Alzheimer’s disease. Translational Medicine. 2021; 8(3): 14-21. (In Russ.). doi: 10.18705/2311-4495-2021-8-3-14-21

33. Agaltsov MV, Korostovtseva LS. Obstructive sleep apnea and cardiovascular comorbidity: modern discordance in assessing the effectiveness of CPAP-therapy against the pathogenetic mechanisms and cardiovascular diseases. Pulmonologiya. 2021; 31(6): 799-807. (In Russ.). doi: 10.18093/0869-0189-2021-31-6-799-807

34. Zhang XB, Cheng HJ, Yuan YT, Chen Y, Chen YY, Chiu KY, et al. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY). 2021; 13(14): 18870-18878. doi: 10.18632/aging.203339

35. Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011; 306(6): 613-619. doi: 10.1001/jama.2011.1115

36. Lavrenikova KI, Elfimova EM, Mikhailova OO, Khachatryan NT, Fedorova VI, Litvin AY, et al. Psycho-neurological aspects of obstructive sleep apnea syndrome. Consilium Medicum. 2019; 21 (9): 69-73. (In Russ.). doi: 10.26442/20751753.2019.9.190508

37. Zinchenko EM, Klimova MM, Shirokov AA, Navolokin NA, Martynov DV, Antonova TS, et al. Changes in the permeability of the blood-brain barrier in the development of Alzheimer’s disease in mice. Izvestiya of Saratov University. Chemistry. Biology. Ecology. 2019; 19(4): 427-439. (In Russ.). doi: 10.18500/1816-9775-2019-19-4-427-439

38. Voirin AC, Celle S, Perek N, Roche F. Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: A pilot study. Sci Rep. 2020; 10(1): 11309. doi: 10.1038/s41598-020-68374-8

39. Zolotoff C, Bertoletti L, Gozal D, Mismetti V, Flandrin P, Roche F, et al. Obstructive sleep apnea, hypercoagulability, and the blood-brain barrier. J Clin Med. 2021; 10(14): 3099. doi: 10.3390/jcm10143099


Review

For citations:


Berdina O.N., Madaeva I.M., Bolshakova S.E., Sholokhov L.F., Rychkova L.V. Obstructive sleep apnea and amyloid-β42 in adolescents: The results of a pilot study. Acta Biomedica Scientifica. 2022;7(3):12-21. (In Russ.) https://doi.org/10.29413/ABS.2022-7.3.2

Views: 1035


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)