Preview

Acta Biomedica Scientifica

Расширенный поиск

Перспективы создания антимикробных препаратов на основе наночастиц меди и оксидов меди

https://doi.org/10.29413/ABS.2021-6.6-2.5

Полный текст:

Аннотация

Распространение полирезистентных к современным антимикробным препаратам штаммов микроорганизмов по-прежнему остаётся актуальной проблемой лечения и профилактики инфекционных заболеваний и общественного здравоохранения в целом.
В настоящее время активно изучается возможность применения нанопрепаратов металлов в различных областях медицины. Наночастицы металлов и оксидов металлов являются перспективными антимикробными агентами и вызывают растущий интерес благодаря своей эффективности. Металлические частицы меди в наномасштабе продемонстрировали высокую антимикробную активность против различных видов грамположительных и грамотрицательных бактерий, а также грибков. Учитывая потенциал наночастиц меди и её оксидов в противомикробной терапии, мы представляем обзор современного состояния исследований, связанных с их антимикробными свойствами, рассмотрением механизмов действия, ключевых факторов, влияющих на антимикробную активность, в том числе полимерной матрицы. Рассмотрены вопросы токсичности и устойчивости к меди. Показано преимущество наночастиц меди и оксидов меди перед другими металлическими наночастицами.
Обобщённые в этом обзоре исследования показали перспективность наночастиц меди в создании новых антимикробных препаратов, которые в будущем могут быть использованы для контроля, профилактики и лечения различных заболеваний.

Об авторах

А. В. Невежина
ФГБНУ «Иркутский научный центр хирургии и травматологии»
Россия

 младший научный сотрудник лаборатории клеточных технологий и регенеративной медицины

664003, г. Иркутск, ул. Борцов Революции, 1, Россия



Т. В. Фадеева
ФГБНУ «Иркутский научный центр хирургии и травматологии»
Россия

 доктор биологических наук, ведущий научный сотрудник лаборатории клеточных технологий и регенеративной медицины 

664003, г. Иркутск, ул. Борцов Революции, 1, Россия



Список литературы

1. Мелешко А.А., Афиногенова А.Г., Афиногенов Г.Е., Спиридонова А.А., Толстой В.П. Антибактериальные неорганические агенты: эффективность использования многокомпонентных систем. Инфекция и иммунитет. 2020; 10(4): 639-654. doi: 10.15789/2220-7619-AIA-1512

2. Díez-Pascual AM. Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review. Int J Mol Sci. 2020; 21(10): 3563. doi: 10.3390/ijms21103563

3. Mitra D, Kang ET, Neoh KG. Antimicrobial copper-based materials and coatings: Potential multifaceted biomedical applications. ACS Appl Mater Interfaces. 2020; 12(19): 21159-21182. doi: 10.1021/acsami.9b17815

4. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copperpolymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C Mater Biol Appl. 2016; 1(69): 1391-1409. doi: 10.1016/j.msec.2016.08.041

5. Dennison C, David S, Lee J. Bacterial copper storage proteins. J Biol Chem. 2018; 293(13): 4616-4627. doi: 10.1074/jbc.TM117.000180

6. Ladomersky E, Petris MJ. Copper tolerance and virulence in bacteria. Metallomics. 2015; 7(6): 957-964. doi: 10.1039/c4mt00327f

7. Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA, McEwan AG, et al. Metal ions in macrophage antimicrobial pathways: Emerging roles for zinc and copper. Biosci Rep. 2013; 33(4): e00049. doi: 10.1042/BSR20130014

8. Akhidime ID, Saubade F, Benson PS, Butler J, Olivier S, Kelly P, et al. The antimicrobial effect of metal substrates on food pathogens. Food Bioprod Process. 2019; 113: 68-76. doi: 10.1016/j.fbp.2018.09.003

9. Sánchez-Sanhueza G, Fuentes-Rodríguez D, Bello-Toledo H. Copper nanoparticles as potential antimicrobial agent in disinfecting root canals. A systematic review. Int J Odontostomat. 2016; 10(3): 547-554. doi: 10.4067/S0718-381X2016000300024

10. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA. 2009; 106(20): 8344-8349. doi: 10.1073/pnas.0812808106

11. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017; 12: 3941-3965. doi: 10.2147/IJN.S134526

12. Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T. Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int. 2013; 2013(1-2): 280512. doi: 10.1155/2013/280512

13. Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances. 2015; 5(16): 12293-12299. doi: 10.1039/C4RA12163E

14. Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, et al. Antimicrobial metal nanomaterials: From passive to stimuli-activated applications. Adv Sci (Weinh). 2020; 7(10): 1902913. doi: 10.1002/advs.201902913

15. Pham AN, Xing G, Miller CJ, Waite TD. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal. 2013; 301: 54-64. doi: 1016/j.jcat.2013.01.025

16. Ma Y, Chen Y, Huang J, Zhang Z, Zhaoet D, Zhang X, et al. A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method. Chem Pap. 2020; 74: 471-483. doi: 10.1007/s11696-019-00888-6

17. Fang FC. Antimicrobial actions of reactive oxygen species. mBio. 2011; 2(5): e00141-11. doi: 10.1128/mBio.00141-11

18. Yang Z, Hao X, Chen S, Ma Z, Wang W, Wang C, et al. Longterm antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J Colloid Interface Sci. 2019; 533: 13-23. doi: 10.1016/j.jcis.2018.08.053

19. Zakharova OV, Godymchuk AY, Gusev AA, Gulchenko SI, Vasyukova IA, Kuznetsov DV. Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. Biomed Res Int. 2015; 2015(3): 412530. doi: 10.1155/2015/412530

20. Majumdar TD, Singh M, Thapa M, Dutta M, Mukherjee A, Ghosh CK. Size-dependent antibacterial activity of copper nanoparticles against Xanthomonas oryzae pv. oryzae – A synthetic and mechanistic approach. Colloids Interface Sci Commun. 2019; 32: 100190. doi: 10.1016/j.colcom.2019.100190

21. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009; 21: 419-424. doi: 10.1002/adma.200801393

22. Yao D, Guo Y, Chen S, Tang J, Chen Y. Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer. 2013; 54(14): 3485-3491. doi: 10.1016/j.polymer.2013.05.005

23. Usman M, El Zowalaty M, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013; 8: 4467-4479. doi: 10.2147/IJN.S50837

24. Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep. 2020; 10: 16680. doi: 10.1038/s41598-020-73497-z

25. Hsueh YH, Tsai PH, Lin KS. pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int J Mol Sci. 2017; 18(4): 793. doi: 10.3390/ijms18040793

26. Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014; 4: 112. doi: 10.3389/fcimb.2014.00112

27. Chen Y, Ding Y, Zheng J. A polymer nanocomposite coating with enhanced hydrophilicity, antibacterial and antibiofouling properties: role of polymerizable emulsifier/anionic ligand. Chem Eng J. 2019; 379: 122268. doi: 10.1016/j.cej.2019.122268

28. He M, Wang Q, Zhao W, Zhao C. A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored via a layer-by-layer thiol-ene click reaction. J Mater Chem B. 2018; 6(23): 3904-3913. doi: 10.1039/C8TB00937F

29. Emelyanenko AM, Pytskii IS, Kaminsky VV, Chulkova EV, Domantovsky AG, Emelyanenko KA, et al. Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion. Colloids Surf B Biointerfaces. 2020; 185: 110622. doi: 10.1016/j.colsurfb.2019.110622

30. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018; 4(12): e01067. doi: 10.1016/j.heliyon.2018.e01067

31. Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections. Nanomaterials. 2021; 11(4): 1046. doi: 10.3390/nano11041046

32. Palza H, Quijada R, Delgado K. Antimicrobial polymer composites with copper micro- and nanoparticles: Effect of particle size and polymer matrix. J Bioact Compat Polym. 2015; 30(4): 366-380. doi: 10.1177/0883911515578870

33. Corbo С, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 2016; 11(1): 81-100. doi: 10.2217/nnm.15.188

34. García-Álvarez R, Vallet-Regí M. Hard and soft protein corona of nanomaterials: Analysis and relevance. Nanomaterials (Basel). 2021; 11(4): 888. doi: 10.3390/nano11040888

35. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018; 16(1): 84. doi: 10.1186/s12951-018-0408-4

36. Felipe Jaramillo A, Riquelme S, Montoya LF, SánchezSanhueza G, Medinam C, Rojas D, et al. Influence of the concentration of copper nanoparticles on the thermo-mechanical and antibacterial properties of nanocomposites based on poly(butylene adipate-co-terephthalate). Polym Compos. 2019; 40: 1870-1882. doi: 10.1002/pc.24949

37. John MS, Nagoth JA, Zannotti M, Giovannetti R, Mancini A, Ramasamy KP, et al. Biogenic synthesis of copper nanoparticles using bacterial strains isolated from an antarctic consortium associated to a psychrophilic marine ciliate: Characterization and potential application as antimicrobial agents. Mar Drugs. 2021; 19(5): 263. doi: 10.3390/md19050263

38. Regmi A, Bhandari J, Bhattarai S, Gautam SK. Synthesis, characterizations and antimicrobial activity of cuprous oxide (Cu2O) nanoparticles. J Nepal Chem Soc. 2019; 40: 5-10. doi: 10.3126/jncs.v40i0.27271

39. Muñoz-Escobar A, Reyes-López SY. Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONPs). PLoS One. 2020; 15(2): e0228864. doi: 10.1371/journal.pone.0228864

40. Chen H, Wu J, Wu M, Jia H. Preparation and antibacterial activities of copper nanoparticles encapsulated by carbon. New Carbon Mater. 2019; 34(4): 382-389. doi: 10.1016/S1872-5805(19)30023-X

41. Xie YY, Hu XH, Zhang YW, Wahid F, Chu LQ, Jia SR, et al. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr Polym. 2020; 229: 115456. doi: 10.1016/j.carbpol.2019.115456

42. Muñoz-Escobar A, Ruíz-Baltazar ÁJ, Reyes-López SY. Novel route of synthesis of PCL-CuONPs composites with antimicrobial properties. Dose Response. 2019: 17(3): 1559325819869502. doi: 10.1177/1559325819869502

43. Bogdanović U, Vodnik V, Mitrić M, Dimitrijević S, Škapin SD, Žunič V, et al. Nanomaterial with high antimicrobial efficacy – copper/polyaniline nanocomposite. ACS Appl Mater Interfaces. 2015; 7(3): 1955-1966. doi: 10.1021/am507746m

44. Dobrovolný K, Ulbrich P, Švecová M, Rimpelová S, Malinčík J, Kohout M, et al. Copper nanoparticles in glycerolpolyvinyl alcohol matrix: In situ preparation, stabilisation and antimicrobial activity. J Alloys Compd. 2017; 697: 147-155. doi: 10.1016/j.jallcom.2016.12.144

45. Basumallick S, Rajasekaran P, Tetard L, Santra S. Hydrothermally derived water-dispersible mixed valence copper-chitosan nanocomposite as exceptionally potent antimicrobial agent. J Nanopart Res. 2014; 16: 2675. doi: 10.1007/s11051-014-2675-9

46. Kadhim A, Haleem AM, Abbas RH. Copper oxide NPs: Synthesis and their anti-dermatophyte activity against Trichophyton rubrum. Engineering and Technology Journal. 2019; 35(3): 276-281.

47. Beltrán-Partida E, Valdez-Salas B, Valdez-Salas E. Synthesis, characterization, and in situ antifungal and cytotoxicity evaluation of ascorbic acid-capped copper nanoparticles. J Nanomater. 2019; 2019: 5287632. doi: 10.1155/2019/5287632

48. Xu X, Shen J, Qin J. Duan H, He G, Chen H. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites. JOM. 2019; 71(1): 294-301. doi: 10.1007/s11837-018-3197-1

49. Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M. Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J Dent Biomater. 2017; 4(1): 347-352.

50. Ubaid R, Sah SK, Srinivasan H. Effect of biosynthesized copper nanoparticles (cunps) on the growth and biofilm formation of fluconazole-resistant Candida albicans. J Microbiol Biotechnol Food Sci. 2019; 9(1): 21-24. doi: 10.15414/jmbfs.2019.9.1.21-24

51. Abdelghany T, Bakri M, Al-Rajhi A, Al Abboud M, Alawlaqi M, Rhaman A, et al. Impact of copper and its nanoparticles on growth, ultrastructure, and laccase production of Aspergillus niger using Corn Cobs Wastes. Bioresources. 2020; 15(2): 3289-3306. doi: 10.15376/biores.15.2.3289-3306

52. Chudobova D, Dostalova S, Ruttkay-Nedecky B, Guran R, Rodrigo MAM, Tmejova K, et al. The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol Res. 2015; 170: 147-156. doi: 10.1016/j.micres.2014.08.003

53. Lawton TJ, Kenney GE, Hurley JD, Rosenzweig AC. The CopC family: Structural and bioinformatic insights into a diverse group of periplasmic copper binding proteins. Biochemistry. 2016; 55(15): 2278-2290. doi: 10.1021/acs.biochem.6b00175

54. Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol. 2012; 12: 193. doi: 10.1186/1471-2180-12-193

55. Doerrer L. Cu in biology: Unleashed by O2 and now irreplaceable. Inorganica Chim Acta. 2017; 481: 4-24. doi: 10.1016/j.ica.2017.11.051

56. Chatterjee S, Kumari S, Rath S, Priyadarshaneea M, Das S. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics. 2020; 12(11): 1637-1655. doi: 10.1039/d0mt00140f

57. Lai YR, Lin CH, Chang CP, Ni HF, Tsai WS, Huang CJ. Distribution of copper resistance gene variants of Xanthomonas citri subsp. citri and Xanthomonas euvesicatoria pv. perforans. Plant Protect Sci. 2021; 57: 206-216. doi: 10.17221/160/2020-PPS

58. Wu F, Ying Y, Yin M, Jiang Y, Wu C, Qian C, et al. Molecular characterization of a multidrug-resistant Klebsiella pneumoniae Strain R46 isolated from a rabbit. Int J Genomics. 2019; 2019: 5459190. doi: 10.1155/2019/5459190

59. Shafeeq S, Yesilkaya H, Kloosterman T, Narayanan G, Wandel M, Andrew P, et al. The Cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol. 2011; 81(5): 1255-1270. doi: 10.1111/j.1365-2958.2011.07758.x

60. Poujois A, Poupon J, Woimant F. Chapter 22 – Direct determination of non-ceruloplasmin-bound copper in plasma. In: Kerkar N, Roberts EA (eds.). Clinical and Translational Perspectives on WILSON DISEASE. Academic Press, 2019; 249-255. doi: 10.1016/B978-0-12-810532-0.00022-7

61. Gray JP, Suhali-Amacher N, Ray SD. Chapter 19 – Metals and metal antagonists. In: Sidhartha D. Ray (eds.). Side Effects of Drugs Annual. Elsevier, 2017; 39: 197-208. doi: 10.1016/bs.seda.2017.07.001

62. National Research Council (US) Committee on Copper in Drinking Water. Copper in Drinking Water. Washington, DC: The National Academies Press; 2000. doi: 10.17226/9782

63. Royer A, Sharman T. Copper toxicity. Treasure Island (FL): StatPearls Publishing; 2021: 1-7. URL: https://www.ncbi.nlm.nih.gov/books/NBK557456/ [date of access: 29.06.2021].

64. Henson T, Navratilova J, Griggs J, Bradham K, Bradham KD, Rogers KR, et al. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology. 2019; 13(6): 795-811. doi: 10.1080/17435390.2019.1578428

65. Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One. 2018; 13(5): e0197083. doi: 10.1371/journal.pone.0197083

66. Lee IC, Ko JW, Park SH, Shin NR, Shin IS, Moon C, et al. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part Fibre Toxicol. 2016; 13(1): 56. doi: 10.1186/s12989-016-0169-x

67. Na I, Kennedy DC. Size-specific copper nanoparticle cytotoxicity varies between human cell lines. Int J Mol Sci. 2021; 22(4): 1548. doi: 10.3390/ijms22041548

68. Tang H, Xu M, Luo J, Zhao L, Ye G, Shi F, et al. Liver toxicity assessments in rats following sub-chronic oral exposure to copper nanoparticles. Environ Sci Eur. 2019; 31: 30. doi: 10.1186/s12302-019-0214-0

69. El Bialy BE, Hamouda RA, Abd Eldaim MA, El Ballal SS, Heikal HS, Khalifa HK, et al. Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. Int J Nanomedicine. 2020; 15: 3827-3842. doi: 10.2147/IJN.S241922

70. Azizi M, Ghourchian H, Yazdian F, Dashtestani F, AlizadehZeinabad H. Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS One. 2017; 12(11): e0188639. doi: 10.1371/journal.pone.0188639


Рецензия

Для цитирования:


Невежина А.В., Фадеева Т.В. Перспективы создания антимикробных препаратов на основе наночастиц меди и оксидов меди. Acta Biomedica Scientifica. 2021;6(6-2):37-50. https://doi.org/10.29413/ABS.2021-6.6-2.5

For citation:


Nevezhina A.V., Fadeeva T.V. Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. Acta Biomedica Scientifica. 2021;6(6-2):37-50. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-2.5

Просмотров: 115


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)