Preview

Acta Biomedica Scientifica

Advanced search

Antioxidant status in children and adolescents with COVID-19

https://doi.org/10.29413/ABS.2021-6.6-2.4

Abstract

Background. The COVID-19 pandemic has raised the importance of this problem to the first stage and has affected healthcare system around the world. Despite the more favorable COVID-19 course, the child population should be at focus of special attention, due to the active participation in its distribution. The course of COVID-19 includes a cascade of pathological processes accompanied by the generation of reactive oxygen species, which can have extremely negative consequences for the developing organism. The research of these processes in children is vital and will improve the effectiveness of preventive and therapeutic measures.
The aim: to analyze changes in enzymatic and non-enzymatic links in the antioxidant defense in children and adolescents with diagnosed COVID-19 infection.
Materials and methods. 17 children and adolescents (average age – 12.35 ± 4.01 years) were examined, including 8 boys (47 %) and 9 girls (53 %) with COVID-19 infection. The control group of children and adolescents (practically healthy) according to the «copy-pair» principle was selected. We used spectrophotometric methods.
Results. In the group of children and adolescents with diagnosed COVID-19 infection, there were lower levels of total antioxidant activity (p < 0.0001), superoxide dismutase activity (p < 0.0001), content of reduced glutathione (p = 0.048) and retinol (p = 0.015), increase in glutathione reductase activity (p = 0.015) relative to the control.
Conclusion. The obtained data indicate the insufficiency of antioxidant system components number in children and adolescents with diagnosed COVID-19 infection and indicate the advisability of antioxidant therapy using to stabilize these indicators.

About the Authors

L. V. Rychkova
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Corresponding Member of the Russian Academy of Sciences, Professor of Russian Academy of Sciences, Director

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



M. A. Darenskaya
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Biol.), Leading Research Officer at the Laboratory of Pathophysiology 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



N. V. Semenova
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Biol.), Leading Research Officer at the Laboratory of Pathophysiology 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



S. I. Kolesnikov
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Professor, Member of the Russian Academy of Sciences, Chief Research Officer 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



A. G. Petrova
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Chief Research Officer at the Laboratory of Infectious Diseases and Immunoprophylaxis in Pediatrics 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



O. A. Nikitina
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Cand. Sc. (Biol.), Junior Research Officer at the Laboratory of Pathophysiology 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



A. S. Brichagina
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Postgraduate at the Laboratory of Pathophysiology

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



E. A. Kudeyarova
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Laboratory Assistant at the Laboratory of Pathophysiology 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



L. I. Kolesnikova
Scientific Centre for Family Health and Human Reproduction Problems 
Russian Federation

 Dr. Sc. (Med.), Professor, Member of the Russian Academy of Sciences, Scientific Supervisor 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



References

1. Skegg D, Gluckman P, Boulton G, Hackmann H, Karim SSA, Piot P, et al. Future scenarios for the COVID-19 pandemic. Lancet. 2021; 397(10276): 777-778. doi: 10.1016/S0140-6736(21)00424-4

2. Coronavirus statistics in the world. URL: https://gogov.ru/covid-19/world [date of access: 15.10.2021]. (In Russ.)

3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13); 1239-1242. doi: 10.1001/jama.2020.2648

4. Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, transmission and prevention. Vaccines (Basel). 2021; 9(9): 1002. doi: 10.3390/vaccines9091002

5. Bhopal SS, Bagaria J, Olabi B, Bhopal R. Children and young people remain at low risk of COVID-19 mortality. Lancet Child Adolesc Health. 2021; 5(5): e12-e13. doi: 10.1016/S2352-4642(21)00066-3

6. She J, Liu L, Liu W. COVID‐19 epidemic: Disease characteristics in children. J Med Virol. 2020; 92(7): 747-754. doi: 10.1002/jmv.25807

7. Sinha IP, Harwood R, Semple MG, Hawcutt DB, Thursfield R, Narayan O, et al. COVID-19 infection in children. Lancet Respir Med. 2020; 8(5): 446-447. doi: 10.1016/S2213-2600(20)30152-1

8. Buonsenso D, Sali M, Pata D, De Rose C, Sanguinetti M, Valentini P, et al. Children and COVID‐19: Microbiological and immunological insights. Pediatr Pulmonol. 2020; 55(10): 2547-2555. doi: 10.1002/ppul.24978

9. Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020; 53(3): 371-372. doi: 10.1016/j.jmii.2020.02.011

10. Hosakote YM, Rayavara K. Respiratory syncytial virusinduced oxidative stress in lung pathogenesis. In: Oxidative stress in lung diseases. Singapore: Springer; 2020: 297-330. doi: 10.1007/978-981-32-9366-3_13

11. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018; 10(8): 392. doi: 10.3390/v10080392

12. Sies H. Oxidative eustress and oxidative distress: Introductory remarks. In: Oxidative Stress Eustress and destress. Academic Press; 2020: 3-12. doi: 10.1016/B978-0-12-818606-0.00001-8

13. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. COVID-19: Oxidative stress and the relevance of antioxidant therapy. Annals of the Russian Academy of Medical Sciences. 2020; 75(4): 318-325. (In Russ). doi: 10.15690/vramn1360

14. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247(10): 3170-3175.

15. Chernyauskene RCh, Varskevichene ZZ, Grybauskas PS. Simultaneous determination of the concentrations of vitamins E and A in blood serum. Laboratory Science. 1984; 6: 362-365. (In Russ.).

16. Hisin PJ, Hilf R. Fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976; 74(1): 214-226. doi: 10.1016/0003-2697(76)90326-2

17. Huang C, Wang Y, Li X, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5

18. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0

19. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020; 51(5): 384-387. doi: 10.1016/j.arcmed.2020.04.019

20. Zhang H, Liu H, Zhou L, Yuen J, Forman HJ. Temporal changes in glutathione biosynthesis during the lipopolysaccharide-induced inflammatory response of THP-1 macrophages. Free Radic Biol Med. 2017; 113: 304-310. doi: 10.1016/j.freeradbiomed.2017.10.010

21. Voronina TA. Antioxidants/antihypoxants – the missing puzzle piece in effective pathogenetic therapy for COVID-19. Infectious Diseases. 2020; 18(2): 97-102. (In Russ.). doi: 10.20953/1729-9225-2020-2-97-102

22. Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. Cambridge: Cambridge Open Engage; 2020. doi: 10.26434/chemrxiv.11938173.v9

23. Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol. 2021; 189: 802-818. doi: 10.1016/j.ijbiomac.2021.08.095

24. Darenskaya M, Kolesnikova L, Kolesnikov S. The association of respiratory viruses with oxidative stress and antioxidants. implications for the COVID-19 pandemic. Curr Pharm Des. 2021; 27(13): 1618-1627. doi: 10.2174/1381612827666210222113351

25. Trujillo-Mayol I, Guerra-Valle M, Casas-Forero N, Sobral MMC, Viegas O, Alarcón-Enos J, et al. Western dietary pattern antioxidant intakes and oxidative stress: Importance during the SARS-CoV-2/COVID-19 pandemic. Adv Nutri 2021; 12(3): 670-681. doi: 10.1093/advances/nmaa171

26. Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants (Basel). 2020; 9(10): 936. doi: 10.3390/antiox9100936

27. Mereuţă IE, Strutinskii FA, Bodrug NI, Poliakova LD, Karaus VF, Cebotari AY. Peculiarities of glutathione metabolism in COVID-19. Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale. 2021; 70(2): 137-142. (In Russ.). doi: 10.52692/1857-0011.2021.2-70.24

28. Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, et al. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol. 2021; 56(9): 2803-2810. doi: 10.1002/ppul.25549

29. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: Beyond ATP. Nat Rev Immunol. 2017; 17(10): 608-620. doi: 10.1038/nri.2017.66

30. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: A pathophysiologist’s view. Bulletin of Siberian Medicine. 2017; 16(4): 16-29. (In Russ.). doi: 10.20538/1682-0363-2017-4-16-29

31. Mani JS, Johnson JB, Steel IS, Broszczak DA, Neilsen PM, Naiker KBM. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020; 284: 197989. doi: 10.1016/j.virusres.2020.197989

32. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Medi Chemi. 2020; 35(1): 145-151. doi: 10.1080/14756366.2019.1690480

33. Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020; 20(9): 515-516. doi: 10.1038/s41577-020-0407-1

34. Keles ES. Mild SARS-CoV-2 infections in children might be based on evolutionary biology and linked with host reactive oxidative stress and antioxidant capabilities. New Microbes New Infect. 2020; 36: 100723. doi: 10.1016/j.nmni.2020.100723

35. Massalska MA, Gober HJ. How children are protected from COVID-19? A historical, clinical, and pathophysiological approach to address COVID-19 susceptibility. Front Immunol. 2021; 12: 2191. doi: 10.3389/fimmu.2021.646894

36. Khakwani M, Horgan C, Ewing J. COVID-19-associated oxidative damage to red blood cells. Br J Haematol. 2021; 193(3): 481. doi: 10.1111/bjh.17317


Review

For citations:


Rychkova L.V., Darenskaya M.A., Semenova N.V., Kolesnikov S.I., Petrova A.G., Nikitina O.A., Brichagina A.S., Kudeyarova E.A., Kolesnikova L.I. Antioxidant status in children and adolescents with COVID-19. Acta Biomedica Scientifica. 2021;6(6-2):29-36. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-2.4

Views: 762


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)