Preview

Acta Biomedica Scientifica

Advanced search

Terahertz radiation in ophthalmology (review)

https://doi.org/10.29413/ABS.2021-6.6-1.20

Abstract

Terahertz (THz) radiation is one of the new, intensively studied interdisciplinary fi elds of scientifi c knowledge, including medicine, in the fi rst decades of the 21st century. At the beginning of this article (review), in a brief form, the basic statements on THz radiation, the main parameters and properties are presented; the modern THz biophtonics technologies used in biology and medicine are considered – THz refl ectometry, THz spectroscopy methods. Then a number of directions and examples of possible use of THz technologies in biology and medicine, including pharmaceuticals, are given. The main part of the review presents the progress of experimental research and the prospects for the clinical application of medical technologies of THz spectroscopy, THz imaging, in ophthalmology in the study of the morphological and functional state of the ocular surface structures, diagnosis, medical testing, and treatment of ophthalmopathology of the ocular surface. The article concludes with a review of experimental studies on the safety of using THz waves for medical diagnostics and treatment of ophthalmopathology. In the fi nal part, the main problems and prospects of introducing medical THz technologies into the clinical practice of an ophthalmologist are considered.

About the Authors

A. G. Zabolotniy
Krasnodar Branch of S.N. Fyodorov Eye Microsurgery Federal State Institution; Kuban State Medical University
Russian Federation

 Cand Sc. (Med.), Docent, Chief Research Officer,; Associate Professor at the Department of Eye Diseases

Krasnykh Partizan str. 6, Krasnodar 350012, Russian Federation 

Mitrofana Sedina str. 4, Krasnodar 350063, Russian Federation 



I. A. Geiko
Krasnodar Branch of S.N. Fyodorov Eye Microsurgery Federal State Institution 
Russian Federation

 Ophthalmologist

 Krasnykh Partizan str. 6, Krasnodar 350012, Russian Federation 



L. M. Balagov
Kuban State Medical University
Russian Federation

 Postgraduate at the Department of Eye Diseases 

Mitrofana Sedina str. 4, Krasnodar 350063, Russian Federation



References

1. Lee YS. Principles of terahertz science and technology. NY: Springer; 2009. doi: 10.1007/978-0-387-09540-0

2. Shumyatsky P, Alfano RR. Terahertz sources. J Biomed Opt. 2011; 16(3): 033001. doi: 10.1117/1.3554742

3. Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging. Adv Opt Photon. 2018; 10: 843-938. doi: 10.1364/AOP.10.000843

4. Maiskaya V. Mastering the terahertz gap. Semiconductors are invading the submillimeter range. Electronics: Science, Technology, Business. 2011; 8: 74-87. (In Russ.)

5. Ramundo-Orlando A, Gallerano GP. Terahertz radiation effects and biological applications. J Infrared Milli Terahz Waves. 2009; 30: 1308-1318. doi: 10.1007/s10762-009-9561-z

6. Betsky OV. Pioneering work on millimeter electromagnetic biology carried out at the IRE RAS. Biomedical Radioelectronics. 2003; 8: 11-20. (In Russ.).

7. Betsky OV, Lebedeva N.N. Biological effects of low intensity millimeter waves (review). Biomedical Radioelectronics. 2015; 1: 31-47. (In Russ.).

8. Bagraev NT, Klyachkin LE, Malyarenko AM, Novikov BA. Teraherz silicon sources in medicine. Biotekhnosfera. 2015; 41(5): 64-79. (In Russ.).

9. Reukov AS, Naimushin AV, Simakov KV, Moroshkin VS, Kozlenok AV, Presnukhina AP. Use of infrared radiation modulated by terahertz frequencies in complex therapy of patients with acute ischemic stroke. Arterial Hypertension. 2016; 22(1): 94-102. (In Russ.).

10. Nazarov MM, Shkurinov AP, Kuleshov EA, Tuchin VV. Terahertz time-domain spectroscopy of biological tissues. Quantum Electronics. 2008; 38(7): 647-654. (In Russ.).

11. Hwang Y, Ahn J, Mun J, Bae S, Jeong YU, Vinokurov NA, Kim P. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy. Opt Express. 2014; 22(10):11465-11475. doi: 10.1364/OE.22.011465

12. Gareev G, Luchinin V. Application of terahertz radiation in biology and medicine. Nanoindustry. 2014; 52(6): 34-44. (In Russ.).

13. Dabouis V, Chancerelle Y, Crouzier D, Debouzy JC. A la frontière onde-lumière: Que peuvent apporter les techniques terahertz (THz) dans le domaine de la santé? [What’s new in biomedical applications for terahertz (THz) technology]. Med Sci (Paris). 2009; 25(8-9): 739-743. [In French]. doi: 10.1051/medsci/2009258-9739

14. Son JH. Principle and applications of terahertz molecular imaging. Nanotechnology. 2013; 24(21): 214001. doi: 10.1088/0957-4484/24/21/214001

15. Zhizhin GN, Nikitin AK, Loginov AP, Golovtsov NI, Ryzhova TA. Elaboration of THz surface plasmon spectroscopy method. Discrete and Continuous Models and Applied Computational Science. 2008; (1): 54-65. (In Russ.).

16. Pickwell-MacPherson E, Wallace VP. Terahertz pulsed imaging – A potential medical imaging modality? Photodiagnosis Photodyn Ther. 2009; 6(2): 128-134. doi: 10.1016/j.pdpdt.2009.07.002

17. Qi N, Zhang ZY, Xiang YH. [Application of terahertz technology in medical testing and diagnosis]. Guang Pu Xue Yu Guang Pu Fen Xi. 2013; 33(8): 2064-2070. [In Chinese].

18. Smolyanskaya O, Chernomyrdin N, Konovko A, Zaytsev K, Ozheredov I, Cherkasova O, et al Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog Quantum Electron. 2018; 62: 1-77.

19. Bajwa N, Au J, Jarrahy R, Sung S, Fishbein MC, Riopelle D, et al. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomed Opt Express. 2016; 8(1): 460-474. doi: 10.1364/BOE.8.000460

20. Tewari P, Taylor ZD, Bennett D, Singh RS, Culjat MO, Kealey CP, et al. Terahertz imaging of biological tissues. Stud Health Technol Inform. 2011; 163: 653-657.

21. Ezerskaya AA, Romanov IV, Smolyanskaya OA, Grachev YaV. Early caries diagnosis of teeth hard tissues by terahertz range laser radiation. Scientifi c and Technical Journal of Information Technologies, Mechanics and Optics. 2011; 76(6): 92-97. (In Russ.).

22. Usanov DA, Romanova NV, Saldina EA. Prospects and trends in the development of terahertz technologies: Patent landscape. The Economics of Science. 2017; 3(3): 189-202. (In Russ.).

23. Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int J Pharm. 2011; 417(1-2): 48-60. doi: 10.1016/j.ijpharm.2011.01.012

24. Haaser M, Gordon KC, Strachan CJ, Rades T. Terahertz pulsed imaging as an advanced characterisation tool for film coatings – A review. Int J Pharm. 2013; 457(2): 510-520. doi: 10.1016/j.ijpharm.2013.03.053

25. Kim KW, Kim KS, Kim H, Lee SH, Park JH, Han JH, et al. Terahertz dynamic imaging of skin drug absorption. Opt Express. 2012; 20(9): 9476-9484. doi: 10.1364/OE.20.009476

26. Sterczewski LA, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, et al. Terahertz hyperspectral imaging with dual chip-scale combs. Optica. 2019; 6: 766-771. doi: 10.1364/OPTICA.6.000766

27. Vit VV. The structure of a healthy human system. Odessa: Astroprint; 2003. (In Russ.)

28. Ozheredov I, Prokopchuk M, Mischenko M, Safonova T, Solyankin P, Larichev A, et al. In vivo THz sensing of the cornea of the eye. Laser Phys. Lett. 2018; 15: 055601. doi: 10.1088/1612-202X/aaac76

29. Avetisova SE, Egorova EA, Moshetova LK, Neroeva VV, Takhchidi KhP. Diseases of the cornea and sclera. In: Ophthalmology: national guidelines. Moscow.: GEOTAR-Media; 2018. (In Russ.).

30. Zaytsev KI, Dolganova IN, Chernomyrdin NV, Komandin GA, Lavrukhin DV, Reshetov IV, et al. Application of terahertz technologies in biophotonics. Part 1: Methods of terahertz spectroscopy and imaging of tissues. Photonics Russia. 2019; 13(7): 680-687. (In Russ.). doi: 10.22184/1992-7296.FRos.2019.13.7.680.687

31. Bennett DB, Taylor ZD, Tewari P, Singh RS, Culjat MO, Grundfest WS, et al. Terahertz sensing in corneal tissues. J Biomed Optics. 2011; 16(5): 057003. doi: 10.1117/1.3575168

32. Taylor ZD, Garritano J, Sung S, Bajwa N, Bennett DB, Nowroozi B, et al. THz and mm-wave sensing of corneal tissue water content: In vivo sensing and imaging results. IEEE Trans Terahertz Sci Technol. 2015; 5(2): 184-196. doi: 10.1109/TTHZ.2015.2392628

33. Taylor ZD, Garritano J, Sung S, Bajwa N, Bennett DB, Nowroozi B, et al. THz and mm-wave sensing of corneal tissue water content: Electromagnetic modeling and analysis. IEEE Trans Terahertz Sci Technol. 2015; 5(2): 170-183. doi: 10.1109/TTHZ.2015.2392619

34. Zabolotniy AG, Sakhnov SN, Parakhuda SE, Smolyanskaya OA, Yezerskaya AA, Geyko IA. Study of the terahertz beam interaction with the eye surface – Fibrous tunic of eyeball, cornea and sclera in experiment. Vestnik of Orenburg State University. 2012; 148(12): 50-54. (In Russ.).

35. Angeluts AA, Balakin AV, Evdokimov MG, Esaulkov MN, Nazarov MM, Ozheredov IA, et al. Characteristic responses of biological and nanoscale systems in the terahertz frequency. Quantum Electronics. 2014; 44(7): 614-632. (In Russ.). doi: 10.1070/QE2014v-044n07ABEH015565

36. Iomdina EN, Seliverstov SV, Sianosyan AA, Teplyakova KO, Rusova AA, Goltsman GN. Terahertz scanning for evaluation of corneal and scleral hydration. Modern Technologies in Medicine. 2018; 4: 143-150. (In Russ.). doi: 10.17691/stm2018.10.4.17

37. Safonova TN, Sikach EI, Ozheredov IA. Current methods of the tear film stability assessment. The Russian Annals of Ophthalmology. 2019; 135(5): 92-98. (In Russ.). doi: 10.17116/oftalma201913505192

38. Kekkonen EA, Konovko AA, Li YuS, Li IM, Ozheredov IA, Park KKh, et al. Assessment of the degree of hydration of ocular surface tissues using THz reflectometry. Quantum Electronics. 2020; 50(1): 61-68. (In Russ.).

39. Sikach EI, Safonova TN, Ozheredov IA, Prokopchuk MN, Mishchenko MD, Listopadskaya YuV. Continuous terahertz reflectometry: Possibilities and prospects of a new method for assessing the degree of corneal hydration. Modern Technologies in Ophthalmology. 2020; 4: 126. (In Russ.). doi: 10.25276/2312-4911-2020-4-104-105

40. Sung S, Dabironezare S, Llombart N, Selvin S, Bajwa N, Chantra S, et al. Optical system design for noncontact, normal incidence, THz imaging of in vivo human cornea. IEEE Trans Terahertz Sci Technol. 2018; 8(1): 1-12. doi: 10.1109/TTHZ.2017.2771754

41. Sung S, Selvin S, Bajwa N, Chantra S, Nowroozi B, Garritano J, et al. THz imaging system for in vivo human cornea. IEEE Trans Terahertz Sci Technol. 2018; 8(1): 27-37. doi: 10.1109/TTHZ.2017.2775445

42. Yao J, Ma J, Zhao J, Qi P, Li M, Lin L, et al. Corneal hydration assessment indicator based on terahertz time domain spectroscopy. Biomed Opt Express. 2020; 11(4): 2073-2084. doi: 10.1364/BOE.387826

43. Ke L, Wu QYS, Zhang N, Yang Z, Teo EPW, Mehta JS, et al. Terahertz spectroscopy analysis of human corneal sublayers. J Biomed Opt. 2021; 26(4): 043011. doi: 10.1117/1.JBO.26.4.043011

44. Ke L, Zhang N, Wu QYS, Gorelik S, Abdelaziem A, Liu Z, et al. In vivo sensing of rabbit cornea by terahertz technology. J Biophotonics. 2021: e202100130. doi: 10.1002/jbio.202100130

45. Smolyanskaya OA, Schelkanova IJ, Kulya MS, Odlyanitskiy EL, Goryachev IS, Tcypkin AN, et al. Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods. Biomed Opt Express. 2018; 9(3): 1198-1215. doi: 10.1364/BOE.9.001198

46. Musina GR, Dolganova IN, Chernomyrdin NV, Gavdush AA, Ulitko VE, Cherkasova OP, et al. Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. J Biophotonics. 2020; 13(12): e202000297. doi: 10.1002/jbio.202000297

47. Safonova TN, Pateiuk LS. Ocular surface system integrity. The Russian Annals of Ophthalmology. 2015; 131(1): 96-103. (In Russ.). doi: 10.17116/oftalma2015131196-102

48. Wolffsohn J, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017; 15(3): 539-574. doi: 10.1016/j.jtos.2017.05.001

49. Ozheredov I, Prokopchuk M, Safonova T, Sikach E, Solyankin P, Angeluts A, et al. Application of THz radiation for in situ control of eye cornea hydration level. EPJ Web of Conferences. 2018; 195: 10009. doi: 10.1051/epjconf/201819510009

50. Onufriichuk ON, Kuroyedov AV. Prevalence of dry eye disease in Russia. Russian Journal of Clinical Ophthalmology. 2021; 21(2): 96-102. (In Russ.). doi: 10.32364/2311-7729-2021-21-2-96-102

51. Geyko IA, Smolyanskaya OA, Sulatskiy MI, Parakhuda SE, Sedykh EA, Zabolotniy AG, et al. Impact of terahertz radiation on the epithelialization rate of scarified Cornea. In: Lilge LL, Sroka R (eds). Medical Laser Applications and Laser-Tissue Interactions VII: Proceedings of SPIE-OSA Biomedical Optics. 2015; 9542: 954. doi: 10.1117/12.2183866

52. Zabolotniy AG. The study of interaction of terahertz radiation with the cornea in experiment in vivo. J Clin Exp Ophthalmol 2017; 8: 4. doi: 10.4172/2155-9570-C1-065

53. Iomdina EN, Seliverstov SV, Teplyakova KO, Jani EV, Pozdniakova VV, Polyakova ON, et al. Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: In vivo assessment of hydration and its verification. J Biomed Opt. 2021; 26(4): 043010. doi: 10.1117/1.JBO.26.4.043010

54. Koyama S, Narita E, Shimizu Y, Shiina T, Taki M, Shinohara N, et al. Twenty four-hour exposure to a 0.12 THz electromagnetic fi eld does not affect the genotoxicity, morphological changes, or expression of heat shock protein in HCE-T cells. Int J Environ Res Public Health. 2016; 13: 793. doi: 10.3390/ijerph13080793

55. Liu YC, Ke L, Yang SWQ, Nan Z, Teo EPW, Lwin NC, et al. Safety profiles of terahertz scanning in ophthalmology. Sci Rep. 2021; 11(1): 2448. doi: 10.1038/s41598-021-82103-9

56. Safonova TN, Fedorov AA, Surnina ZV, Sikach EI, Ozheredov IA. Experimental investigation of the safety of terahertz radiation in corneal hydration assessment. The Russian Annals of Ophthalmology. 2021; 137(3): 58-67. (In Russ.). doi: 10.17116/oftalma202113703158


Review

For citations:


Zabolotniy A.G., Geiko I.A., Balagov L.M. Terahertz radiation in ophthalmology (review). Acta Biomedica Scientifica. 2021;6(6-1):168-180. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-1.20

Views: 1128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)